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Abstract

Despite the transformational success of machine learning across various applications, ex-
amples of deployed models failing to recognize and support human-centered (HC) criteria
are abundant. In this thesis, I conceptualize the space of human-machine collaboration
with respect to two components: interpretation of people by machines and interpretation
of machines by people. I develop several tools that make improvements along these axes.

First, I develop a pipeline that predicts depressive symptoms rated by clinicians from
real-world longitudinal data outperforming several baselines. Second, I introduce a novel,
model-agnostic, and dataset-agnostic method to approximate interactive human evaluation
in open-domain dialog through self-play that is more strongly correlated with human
evaluations than other automated metrics commonly used today. While dialog quality
evaluation metrics predominantly use word-level overlap or distance metrics based on
embedding resemblance to each turn of the conversation, I show the significance of
taking into account the conversation’s trajectory and using proxies such as sentiment,
semantics, and user engagement that are psychologically motivated. Third, I demonstrate
an uncertainty measurement technique that helps disambiguate annotator disagreement
and data bias. I show that this characterization also improves model performance. Finally,
I present a novel method that allows humans to investigate a predictor’s decision-making
process to gain better insight into how it works. The method jointly trains a generator, a
discriminator, and a concept disentangler, allowing the human to ask "what-if" questions. I
evaluate it on several challenging synthetic and realistic datasets where previous methods
fall short of satisfying desirable criteria for interpretability and show that our method
performs consistently well across all. I discuss its applications to detect potential biases
of a classifier and identify spurious artifacts that impact predictions using simulated
experiments.
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Together, these novel techniques and insights provide a more comprehensive inter-
pretation of people by machines and more powerful tools for interpretation of machines
by people that can move us closer to HC optimality.

Thesis Supervisor: Rosalind W. Picard
Title: Professor of Media Arts and Sciences
Massachusetts Institute of Technology

4



This dissertation has been reviewed and approved by the following committee members

Thesis Supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rosalind W. Picard, Sc.D.
Professor of Media Arts and Sciences
Massachusetts Institute of Technology

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

David Sontag, Ph.D.
Associate Professor of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Thesis Reader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Zachary C. Lipton, Ph.D.
Assistant Professor of Operations Research and Machine Learning

Carnegie Mellon University

5



6



Acknowledgments

I still vividly remember the night that a 20-year-old me came across a talk by Roz about

detecting seizures from wearable EDA [189], and thought to myself: "Wow! You can do

cool computational work AND help people, potentially saving lives?!". I spent days and

weeks researching what the affective computing group at MIT Media Lab was doing. I got

so inspired that I framed my bachelor’s thesis around measuring heart rate and respiratory

rate on smartphones [68], and gathered the courage to apply to the lab a few months later.

Thank you, Roz, for taking a chance on me then and for the opportunity to join your lab.

Thank you for inspiring, guiding, encouraging, and supporting me all these years, for

helping me grow as a researcher and as a person, and for letting me follow my interests

when I wanted to venture into new research directions. Of course, drinking from the

firehouse has come with its challenges, but having an extremely knowledgeable advisor

who genuinely cares has made it much more manageable. What a journey has it been, full

of ups and downs. In retrospect, every moment has been worth it.

I want to express my deepest gratitude to David and Zack for joining my committee

and sharing their insights with me. David, your perspective has long been a source of

inspiration to me since the day I took your class in 2017. Thanks for all the great advice

you gave me to improve my work. I am amazed by your efficiency and creativity and how

you manage to provide so many great suggestions in a 15-minute meeting. Zack, thanks

for your thought-provoking opinion pieces that have shaped my thinking over the years.

Your prose has always been a source of introspection and analytical thinking. Thanks for

all the advice and suggestions you gave me to improve my work. I am in awe of how

effortlessly you wrap serious work in funny and engaging conversations.

Of course, none of this work could have been possible without my amazing collabora-

tors. Been, thank you for being a fantastic role model and a shining light of inspiration

and insight. Who knew a coffee chat at CVPR could lead to such a wonderful long-term

collaboration. I am so grateful for your mentorship and generosity and always giving me

7



the most genuine and helpful advice. Natasha, your enthusiasm and insights are contagious.

Working together has been a highlight of my journey. Thanks, Brendan and Brian, for

hosting me at Google and opening doors to new research directions. Thank you, Mary

and Daniel, for hosting me at Microsoft Research and trusting me to design and conduct a

study from start to finish. Sara, thanks for your limitless intellectual curiosity and kindness

that has made our collaboration so rewarding. Thank you to many more collaborators at

MIT: Asaf Azaria, Darian Bhathena, Neska El Haouij, Szymon Fedor, Craig Ferguson,

Javier Hernandez, Noah Jones, Agata Lapedriza, Jinmo Lee, Alexander Lynch, Pattie

Maes, Akane Sano, Judy Shen, Marek Subernat, Sebastian Zepf, and Diane Zhou, at

Harvard: Abdul Saleh, Georgia Tech: Grace Leslie, at Google: Shane Gu, Chun-Liang Li,

at Microsoft Research: Kael Rowan, and at MGH: Jonathan Alpert, Kate Bentley, Chelsea

Dale, Esther Howe, Dawn Ionescu, Ashley Meyer, David Mischoulon, Paola Pedrelli, Lisa

Sangermano, Benjamin Shapero. I deeply value our collaboration, and none of this work

would have been possible without you, nor as exciting or as fun.

I want to thank all my friends and colleagues in the affective computing group. What

a dynamic group of diverse, inspiring, ambitious, hardworking, and thoughtful people!

Thank you, Natasha, Sara, Agata, Matt, Grace, Yue, Javier, Judy, Ehi, Kristy, Vincent,

Noah, Akane, Katie, Rob, Karthik, Neska, Darian, Craig, Oggi, Yuanbo, Eiji, Oliver,

Daniel, Sebastian, Fengjiao, Yadid, Terumi, Aithne, and Rashmi. Thanks for making

the fun parts more memorable and the rocky patches worth the effort, and being sources

of strength and compassion. Special thanks to Sable for doing an incredible amount of

work in the background so effortlessly and smoothly. To all my friends outside of the

affective computing group, Elahe, Sabah, Mina P, Sadegh, Sajjad, Sepide, Ali V, Ameneh,

Mohammad R, Maryam A, Vahid, Ramya, Karthik, Saeed, Maryam M, Hessam, Sahoora,

Amirhossein, Reihane, Donia, Mina D, Fereshte, Homa, Mahdi H, Nicolas, Latifeh, Leila,

Hamid, Fatemeh K, Tahereh, Mohammad A, Fatemeh M, Mina K, Ali A, Mahdi A and

many more: thank you for all the laughter we shared, all the trips we took together, all the

get-togethers and celebrations, and for keeping me sane all these years.

8



I’m forever grateful to my family for reminding me of what truly matters. Thank you,

mom, for your love and support and for teaching me the importance of work ethic. Thank

you, Azra and Hosna, for instilling curiosity in me as a kid and for being my closest friends

and confidants as an adult. Thank you, Mohammad Saeed, for all the fun memories we

have together that still make me laugh even when I’m down. Thank you, dad, for teaching

me to stay calm by example rather than by words.

Last but not least, thank you, Ardavan, for your endless love and support all these

years, for helping me practice a growth mindset, and for showing the value of persistence,

optimism, and patience. Thanks for bearing the date nights that turned into my research

rants, for being my best friend and a profoundly insightful person. I will forever be grateful

to MIT not only because of the degrees it awarded me but for helping me find you. Having

someone who believes in you even when you doubt yourself, thoroughly understands and

supports you and your dreams, and enables you to overcome your fears without an ounce

of judgment is transformative.

9



10



Contents

1 Introduction 39

1.1 Inferring Human State . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.2 Inferring Human Feedback through Interaction . . . . . . . . . . . . . . 43

1.3 Estimating Uncertainty of Machine Predictions . . . . . . . . . . . . . . 43

1.4 Tools for Investigating Machine Predictions . . . . . . . . . . . . . . . . 45

1.5 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Estimating Depressive Symptoms from Patient’s Physiological and Behav-

ioral Data 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Study Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.4 Feature Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.1 Physiological Signals . . . . . . . . . . . . . . . . . . . . . . . . 56

2.4.2 Phone Passive Usage Data . . . . . . . . . . . . . . . . . . . . . 58

2.4.3 Interactive Surveys . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4.4 Clinical Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.5 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 Feature Transformation and Selection . . . . . . . . . . . . . . . 61

2.5.2 HDRS Imputation Based on Survey Data . . . . . . . . . . . . . 61

2.5.3 HDRS Prediction Based on Sensor Data . . . . . . . . . . . . . . 63

11



2.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6.1 Imputation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6.2 Prediction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.6.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . 71

2.7 Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.7.1 Objective vs. Subjective Reports of Sleep Quality in Major De-

pressive Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.7.2 Association between Location Patterns from Commodity Phone

Sensors and Depression Severity . . . . . . . . . . . . . . . . . . 74

2.7.3 Association Between Cell Phone Social Interactions and Depres-

sion Severity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.7.4 Association Between Mood and Alcohol Use in Major Depressive

Disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.9 Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 Approximating Interactive Human Evaluation in Open-Domain Dialog 83

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Knowledge Distillation for Sentiment and Semantic Regularization . . . . 88

3.3.1 Emotion and Infersent Regularization (EI) . . . . . . . . . . . . . 89

3.4 Interactive Evaluation Methodologies . . . . . . . . . . . . . . . . . . . 91

3.4.1 Traditional Evaluation . . . . . . . . . . . . . . . . . . . . . . . 91

3.4.2 Interactive Human Evaluation . . . . . . . . . . . . . . . . . . . 92

3.4.3 Novel Metrics and Self-play . . . . . . . . . . . . . . . . . . . . 94

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5.2 Interactive Human Evaluation . . . . . . . . . . . . . . . . . . . 96

12



3.5.3 Traditional Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.5.4 Novel Metrics Applied to Human Data and Self-play . . . . . . . 99

3.6 Optimizing Human-centered Metrics in a Reinforcement Learning Frame-

work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.6.1 Follow Up I: Human-Centric Dialog Training via Offline Rein-

forcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6.2 Follow Up II: Hierarchical Reinforcement Learning for Open-

Domain Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.7 Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.7.1 Ablation models results . . . . . . . . . . . . . . . . . . . . . . 105

3.7.2 Hybrid metric coefficients . . . . . . . . . . . . . . . . . . . . . 106

3.7.3 Human interactive ratings correlation table . . . . . . . . . . . . 106

3.7.4 Self-play correlation table . . . . . . . . . . . . . . . . . . . . . 107

3.7.5 Additional correlation statistics . . . . . . . . . . . . . . . . . . 108

3.7.6 Reddit casual conversation corpus details . . . . . . . . . . . . . 108

3.7.7 Embedding-based metrics . . . . . . . . . . . . . . . . . . . . . 108

3.7.8 Static evaluation setup details . . . . . . . . . . . . . . . . . . . 111

3.7.9 Interactive evaluation details . . . . . . . . . . . . . . . . . . . . 113

3.7.10 Website server setup and configuration . . . . . . . . . . . . . . 114

3.7.11 Emotion embedding details . . . . . . . . . . . . . . . . . . . . 115

3.7.12 Hyper-parameter tuning details . . . . . . . . . . . . . . . . . . . 115

3.7.13 Self-Play Overlap Analysis . . . . . . . . . . . . . . . . . . . . . 116

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.9 Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 119

4 Interpretability Benefits of Uncertainty Quantification 121

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Background & Related Work . . . . . . . . . . . . . . . . . . . . . . . . 123

13



4.3 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.3.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3.2 Epistemic & Aleatoric Uncertainties . . . . . . . . . . . . . . . . 125

4.4 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.4.1 A Proxy for Inter-Rater Disagreement . . . . . . . . . . . . . . . 127

4.4.2 Task Subjectivity, Difficulty & Bias in Training . . . . . . . . . . 127

4.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.5 Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.5.1 Model Architecture and Pre-Training Details . . . . . . . . . . . 131

4.5.2 Annotation Disagreement Details . . . . . . . . . . . . . . . . . 131

4.5.3 Detailed Calibration Results . . . . . . . . . . . . . . . . . . . . 132

4.5.4 Detailed Performance Metrics . . . . . . . . . . . . . . . . . . . 134

4.6 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 134

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.8 Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 DISSECT: Disentangled Simultaneous Explanations via Concept Traversals 137

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.1 Baseline I: Multi-modal Explainability through VAE-based Disen-

tanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.3.2 Baseline II: Multi-modal Explainability through Conditional Sub-

space VAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3.3 Baseline III: Multi-modal Explainability through Progressive Ex-

aggeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3.4 Our Method: Enforcing Distinctness of Discovered Concepts . . . 148

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

14



5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4.2 Evaluation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.4.3 Case Study I: Validating the Qualities of Concept Traversals . . . 154

5.4.4 Case Study II: Investigating Alignment with Expert Domain Knowl-

edge and Identifying Spurious Artifacts . . . . . . . . . . . . . . 156

5.4.5 Case Study III: Identifying Biases . . . . . . . . . . . . . . . . . 159

5.5 Supplementary Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5.1 DISSECT Details . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5.2 Development of Modified VAE Baselines . . . . . . . . . . . . . 162

5.5.3 Evaluation Metrics Details . . . . . . . . . . . . . . . . . . . . . 164

5.5.4 Experiment Setup and Hyper-parameter Tuning Details . . . . . . 164

5.5.5 Additional Qualitative Results for Case Study I . . . . . . . . . . 165

5.5.6 Additional Quantitative Results for Case Study I . . . . . . . . . 167

5.5.7 Additional Quantitative Results for Case Study II . . . . . . . . . 168

5.5.8 Additional Quantitative Results for Case Study III . . . . . . . . 168

5.5.9 Additional Qualitative Results for Case Study III . . . . . . . . . 169

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.7 Statement of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 171

6 Conclusions and Future Work 173

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

15



16



17



List of Figures

1-1 A conceptual framework for machine learning and human interaction with respect to

human-centered optimality and how the thesis roadmap fits within this framework. The

𝑥-axis shows interpretation of machines by people: techniques that allow humans to

investigate decision making of machine learning systems. Tools that facilitate investi-

gation and interpretation can empower humans to identify potential failure points and

inform actionable directions for improvement. Higher 𝑥 values represent increasing flexi-

bility of investigation through interpretation tools. The 𝑦-axis represents interpretation

of peopleby machines: endowing machines with mechanisms to support, infer, or adapt

to human states. More accurate inference can lead to better adaptation of machines to

human preferences or improved tools for managing states, such as personal wellbeing.

Higher 𝑦 values represent more comprehensive consideration of human state. The origin

represents no interpretation of machines by humans (𝑥 = 0) and no consideration of

human state (𝑦 = 0). Previous work has been presented with respect to this conceptual

framework: (a) Attempts at predicting mental health (e.g. [23, 88, 157, 236]) and a

broader set of self-reported wellbeing metrics (e.g. [12, 13, 24, 88, 129, 142, 161]), (b)

Detecting physiological signals such as pulse and breathing rate (e.g. [26, 97, 99, 184])

(c) Automated metrics of dialog quality (e.g. [4, 56, 143, 166, 182, 204]), (d) Inter-

pretability by weighing sample importance (e.g. [120, 122, 128, 260]), (e) Interpretability

based on saliency maps (e.g. [51, 150, 233, 237]), (f) Uncertainty quantification in deep

learning settings (e.g. [58, 59, 118, 180, 216]), (g) Interpretability based on high-level

concepts (e.g. [22, 76, 123]), (h) Interpretability through generative explanations (e.g.

[38, 117, 209, 230]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
18



2-1 Normalized histogram of the original HDRS scores (left-green) and the

imputed HDRS-I scores (right-red). . . . . . . . . . . . . . . . . . . . . 62

2-2 Distribution of depression categories based on original HDRS scores (left-

green) and imputed HDRS-scores (right-red). . . . . . . . . . . . . . . . 63

2-3 Time-series of Original (HDRS), imputed (HDRS-I), and predicted (HDRS-

P) scores for one sample user over eight weeks. For simplicity, both HDRS

and HDRS-I are shown in green. HDRS-P is shown in red and black for

training on HDRS-I values and testing on HDRS, respectively. . . . . . . 64

2-4 Original (HDRS), imputed (HDRS-I), and predicted (HDRS-P) scores for

daily data from all patients over eight weeks. For simplicity, both HDRS

and HDRS-I are shown in green. HDRS-P is shown in red and black for

training on HDRS-I values and testing on HDRS, respectively. . . . . . . 66

2-5 Distribution of features that are significantly different between days with

good vs. poor mental health. . . . . . . . . . . . . . . . . . . . . . . . . 68

2-6 Mean absolute error of predicting HDRS using different models under

the user-split and time-split scenarios [186]. In the time-split setting, the

lowest mean absolute error (MAE) was obtained by the model that included

only features from the phone [𝐹 (2, 12) = 19.04, 𝑝 < 0.002]. In the

user-split scenario, all modalities performed about the same [𝐹 (2, 12) =

0.55, 𝑝 < 0.59] with the lowest MAE obtained by the model using only the

features from the wearable sensor. The best models in each deployment

setting provided more accurate estimates than group median and individual

screen baselines but not better than the individual median baseline in the

time-split scenario. However, these differences were not significant. . . . 73

2-7 Objective sleep from two sample patients. Black: sleep, white: awake,

grey: missing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2-8 Objective vs. subjective sleep regularity index. . . . . . . . . . . . . . . . 76

19



3-1 Illustration of the EI regularization (blue-solid) applied to VHRED base-

line (red-checkered) to enforce encoding sentiment and semantics of an

utterance in the Context RNN. . . . . . . . . . . . . . . . . . . . . . . . 90

3-2 Illustration of EI regularization (blue-solid) applied to HRED baseline (red-

checkered) to enforce encoding sentiment and semantics of an utterance in

the Context RNN. The EI regularization can be similarly applied to VHCR. 90

3-3 Consent form in the Interactive Evaluation Platform (available at https://neural.

chat). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3-4 Interactive Evaluation Platform (available at https://neural.chat): Side-by-side

view of chat history (left) and the first part of the evaluation form (right). . . . . . . . 93

3-5 Interactive Evaluation Platform (available at https://neural.chat): The second

part of the evaluation form showing the remaining questions. . . . . . . . . . . . . 93

3-6 One hundred highest vs. lowest quality conversation trajectories; lines:

mean, shaded area: 90% confidence intervals, x-axis: conversation turns.

(a) Timing of upvote/downvote ratings: A bad first impression impedes

overall rating. +1, -1, and 0 show upvotes, downvotes, and no manual

feedback, respectively. (b) Participants talk longer and use more words

in conversations rated higher. Number of words have been normalized

between 0 and 1. (c) High-quality conversations elicit more positive user

sentiment; many participants leave after expressing negative sentiment.

Sentiment score ranges from -1 (the most negatively valenced emotion) to

+1 (the most positively valenced emotion). (d) High-quality conversations

are more semantically similar as measured by average word coherence

between user query and bot responses. Users tend to leave the conversation

when the bot responses are semantically dissimilar. Coherence score can

range from 0 (no coherence) to 1 (maximum coherence). . . . . . . . . . 101
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3-7 EI vs. baseline conversation trajectories; lines: mean, shaded area: 90% confidence

intervals, x-axis: conversation turns. (a) EI elicits longer responses from users, suggesting

that they are more engaged compared to the baseline models. (b) EI evokes more laughter

from users compared to baseline. (c) EI has higher semantic coherence as measured by

average word coherence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3-8 Pearson correlations between five human metrics and automated metrics. Sentiment

-U has higher correlation with interactive human ratings than prior metrics. Hybrid

Metric MH -B/B, our novel self-play based metric, has higher correlation across all

human metrics more than any other metric proposed to-date. Notes: -U: Calculated on

user response, -B: Calculated on bot response, -U/B: Calculated between user and bot

response, -B/B: Calculated between consecutive bot utterances. . . . . . . . . . . . 103

3-9 The learned coefficients (𝜆𝑖) within the hybrid metric (𝑀𝐻 ). Using a leave-bot-out

method, we observe that the 𝜆𝑖s are stable. The error bars show 90% confidence intervals.

See Section 3.4.3 for details about calculation of these metrics. . . . . . . . . . . . 106

3-10 Correlation matrix showing the relationships between different aspects of interactive

human evaluation. We observe a strong correlation across these aspects. . . . . . . . 106

3-11 Correlation matrix showing the relationships between different automated metrics on

self-play trajectories and interactive human ratings aggregated on the bot-level. We

observe that inducing positive sentiment as measured by Sentiment and Laughter, and

being able to generate longer sentences in self-play are associated with higher quality
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by reducing the diversity of generated responses, though applicable to interactive human

data. Most importantly, our novel hybrid metric applied to self-play (𝑀𝐻 -B/B) is highly

correlated with all human ratings of the dialog model. Postfixes: -I: Interactive human

evaluation, -B: Calculated on bot response, -B/B: Metric applied to self-play on two

consecutive bot generated utterances when the bot converses with itself. See Section

3.4.3 for details about calculation of these metrics. . . . . . . . . . . . . . . . . . 107
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3-12 Spearman correlations between five human metrics and automated metrics. Sentiment

-U has higher correlation with interactive human ratings than prior metrics. Hybrid

Metric MH -B/B, our novel self-play based metric, has higher correlation across all

human metrics more than any other metric proposed to-date. Notes: -U: Calculated on

user response, -B: Calculated on bot response, -U/B: Calculated between user and bot

response, -B/B: Calculated between consecutive bot utterances. . . . . . . . . . . . 109

3-13 Kendall correlations between five human metrics and automated metrics. Sentiment

-U has higher correlation with interactive human ratings than prior metrics. Hybrid

Metric MH -B/B, our novel self-play based metric, has higher correlation across all

human metrics more than any other metric proposed to-date. Notes: -U: Calculated on

user response, -B: Calculated on bot response, -U/B: Calculated between user and bot
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3-16 (a) 64-most frequent emojis as predicted by [52] used for calculating

emotion embeddings. (b) Assigned weights used for reducing the 64-
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4-1 Left: Aleatoric uncertainty (𝑈𝑎) - Samples with lowest 𝑈𝑎 are stereotypical

expressions of emotion where annotators (almost) unanimously agree on

the assigned label. Conversely, images with the highest 𝑈𝑎 either represent

subjectivity involved in human annotations or low image quality, e.g. when

the face is occluded by hands or the image is a drawing as opposed to a

photograph. Right: Epistemic uncertainty (𝑈𝑒) - Samples with lowest 𝑈𝑒

show stereotypical expressions of emotion that are common in the training

set. On the other hand, images with the highest 𝑈𝑒 include dark-skinned

subgroups, a non-frontalized photo, and a highly illuminated image, even

when there is near-perfect agreement across human-annotators. We believe

this is due to the skewed pre-training dataset, suggesting that it is not

equipped to encode such samples. . . . . . . . . . . . . . . . . . . . . . 125

4-2 Reliability diagram for Baseline and UncNet of FER+ hold out test data

[5]. Soft-labels result in well-calibrated predictions. . . . . . . . . . . . . 130

4-3 Model architecture: An Inception-ResNet-v1 followed by an average

pooling layer and a fully-connected network with two hidden layers (FC).

Pre-training on CASIA-WebFace dataset has been conducted on the full

Inception-ResNet-V1. We froze the weights of the network and used up to

the Mixed-7a layer to extract features from raw images. The remaining

unused layers of Inception-ResNet-v1 are in grey. We then stack two FCs

on the Mixed-7a layer after average pooling. Dropout is only applied to

the FC layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4-4 Distribution of annotators’ disagreement probability (𝑑𝑖) on FER+ training

samples. The histogram heights are scaled to represent density rather than

absolute count, so that the area under the fitted curve is one. . . . . . . . 132
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5-1 Applying explainability methods to a melanoma classifier in the dermatol-

ogy domain. (a) explanation by heatmaps such as [51, 150, 233, 237]. (b)

explanation by segmentation masks such as [76, 213]. Both heatmaps and

segmentation masks only provide partial information. They might hint at

what is influential within the sample, potentially focusing on the lesion

area. However, they cannot show what kind of changes in color, texture,

or inflammation could transform the input at hand from benign to malig-

nant. (c) explanation by sample retrieval such as [228]. A retrieval-based

technique might show input samples of malignant skin lesions that have

similarities to a benign lesion in patient A, but from a different patient

B, potentially from another body part or even a different skin tone. Such

examples do not show what this benign lesion in patient A would have

to look like if it were classified as malignant instead. (d) explanation by

counterfactual generation such as [209, 230]. This method depicts how to

modify the input sample to change its class membership. A counterfactual

explanation visualizes what a malignant tumor could look like, in this

case, by increasing the diameter of the lesion. (e) explanation by multiple

counterfactual generations such as DISSECT. Multiple counterfactuals

could highlight several different ways that changes in a skin lesion could

reveal its malignancy and overcome some of the blind spots of a single

explanation. For example, they can demonstrate that large lesions, jagged

borders, and asymmetrical shapes lead to melanoma classification. They

can even show potential biases of the classifier by revealing that surgical

markings can spuriously lead to melanoma classification. . . . . . . . . . 139

5-2 Illustration of SynthDerm dataset that we algorithmically generated.

Fitzpatrick scale of skin classification based on melanin density and corre-

sponding samples representing different characteristics in the dataset are

visualized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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5-3 Qualitative results on 3D Shapes. We observe that EPE and EPE-mod

converge to finding the same single concept, despite EPE-mod having

the ability to express multiple pathways to switch the classifier outcome

from False to True. However, DISSECT is capable of discovering the two

distinct ground-truth concepts: CT1 flips the floor color to cyan and CT2

flips the shape color to red. . . . . . . . . . . . . . . . . . . . . . . . . . 154

5-4 Qualitative results on SynthDerm comparing DISSECT with the strongest

baseline, EPE-mod. We illustrate a few queries with different Fitzpatrick

ratings [54] and visualize two of the most prominent concepts for each

technique. We observe that EPE-mod converges to finding a single concept

that only vaguely represents meaningful ground-truth concepts. However,

DISSECT successfully finds concepts describing asymmetrical shapes,

jagged borders, and uneven colors that align with the ABCDE of melanoma

[202]. DISSECT also identifies concepts for surgical markings that impact

the classifier’s decisions. Basing melanoma classification on such spuri-

ous concepts is incongruent with expert domain knowledge. Successfully

surfacing that the model has learned these false associations could inform

actions to improve the model-under-test. . . . . . . . . . . . . . . . . . . 159

5-5 Qualitative results on CelebA. A biased classifier has been trained to

predict smile probability, where the training dataset has been sub-sampled

such that smiling co-occurs only with "bangs" and "blond hair" attributes.

EPE does not support multiple CTs. We observe that EPE-mod converges

to finding the same concept, despite having the ability to express various

pathways to change 𝑓(�̄�) through CT1 and CT2. However, DISSECT

discovers distinct pathways: CT1 mainly changes hair color to blond, and

CT2 does not alter hair color but focuses more on hairstyle and tries to add

bangs. Thus, DISSECT identifies two otherwise hidden biases. . . . . . . 160
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5-6 Illustration of DISSECT. Orange, Green, and Blue show elements related

to the discriminator, generator, and CT disentangler, respectively. . . . . . 162

5-7 Simplified illustration of DISSECT. Orange, Green, and Blue show ele-

ments related to the discriminator, generator, and CT disentangler, respec-

tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

5-8 Qualitative results on 3D Shapes when flipping classification outcome

from "False" to "True." We observe that EPE-mod converges to finding

the same concept, despite having the ability to express multiple pathways

to switch the classifier outcome. However, DISSECT can discover the two

Distinct ground-truth concepts: 𝐶𝑇1 flips the floor color to cyan, and 𝐶𝑇2

converts the shape color to red. . . . . . . . . . . . . . . . . . . . . . . . 166

5-9 Qualitative results on 3D Shapes when flipping classification outcome

from "True" to "False." We observe that EPE-mod converges to finding

the same concept, despite having the ability to express multiple pathways

to switch the classifier outcome. However, DISSECT is capable of discov-

ering Distinct paths to do so. Left: When the input query has a red shape,

but the floor color is not cyan, CT1 flips the shape color to orange and CT2

flips it to violet. Middle: When the input query has a cyan floor, but the

shape color is not red, CT1 flips the floor color to lime, and CT2 converts it

to magenta. Right: When the input query has a red shape and cyan floor,

CT1 changes the shape color to dark orange and floor color to lime, and

CT2 flips the shape color to violet and floor color to magenta. . . . . . . . 166
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5-10 Qualitative results on CelebA. A biased classifier has been trained to

predict smile probability, where the training dataset has been sub-sampled

such that smiling co-occurs only with "bangs" and "blond hair" attributes.

EPE does not support multiple CTs. We observe that EPE-mod converges

to finding the same concept, despite having the ability to express several

pathways to change 𝑓(�̄�) through CT1 and CT2. However, DISSECT can

discover Distinct routes: CT1 mainly changes hair color to blond, and CT2

does not alter hair color but focuses more on hairstyle and tries to add

bangs. Thus it identifies two otherwise hidden biases. . . . . . . . . . . . 167

5-11 Acquired vs. desired classifier posterior probability for generated sam-

ples that constitute a CT on 3D Shapes over 10K queries in total. The

ideal would be a line of slope one. Error bars represent 95% confidence

intervals. We observe that DISSECT performs similarly to EPE that has

been particularly geared toward exhibiting Influence, and its extension,

EPE-mod. VAE based methods perform poorly in terms of Influence.

CSVAE performs significantly better than other VAE baselines but still

works much worse than EPE, EPE-mod, and DISSECT. There is a sig-

nificant correlation between acquired and desired posterior probabilities

of generated samples for DISSECT (r=0.82, p<.0001), EPE-mod (r=0.87,

p<.0001), EPE (r=0.81, p<.0001), and CSVAE (r=0.32, p<.0001). In other

VAE baselines, there is very low or no correlation between acquired and

desired probabilities: DIPVAE (r=0.14, p<.0001), VAE (r=0.07, p<.0001),

𝛽-VAE-mode (r=-0.01, p>.1) and Annealed-VAE-mod (r=-0.01, p>.1). . . 168
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5-12 Acquired vs. desired classifier posterior probability for generated samples

that constitute a CT on SynthDerm over 10K queries in total. The ideal

would be a line of slope one. Error bars represent 95% confidence intervals.

We observe that DISSECT performs similarly to EPE that has been partic-

ularly geared toward exhibiting Influence, and it potentially outperforms

EPE-mod. Although CSVAE produces examples with acquired posterior

probabilities correlated with the desired values (r=0.25, p<.0001), it per-

forms significantly worse than EPE (r=0.87, p<.0001), EPE-mod (r=0.81,

p<.0001), and DISSECT (r=0.92, p<.0001). . . . . . . . . . . . . . . . . 169

5-13 Acquired vs. desired classifier posterior probability for generated samples

that constitute a CT on CelebA over 10K queries in total. The ideal would

be a line of slope one. Error bars represent 95% confidence intervals. The

results suggest that DISSECT performs on par with the three strongest

baselines in terms of Importance. Acquired and desired probabilities

of generated samples are significantly correlated for DISSECT (r=0.84,

p<.0001), EPE-mod (r=0.86, p<.0001), and EPE (r=0.85, p<.0001). . . . 170

28



List of Tables

2.1 Dataset summary after computing daily features. . . . . . . . . . . . . . 56

2.2 HDRS values and levels of depression severity. . . . . . . . . . . . . . . 60

2.3 Best prediction model. For the values of hyperparameters used in these

experiments, refer to the main text. . . . . . . . . . . . . . . . . . . . . . 65

2.4 Best performance for HDRS imputation on validation and hold-out test

sets as measured by Root Mean Square Error (RMSE) . . . . . . . . . . . 67

2.5 Most significantly different distributions of feature values for days with

good vs. poor mental health. . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Objective vs. subjective sleep and awake epochs for HCs . . . . . . . . . 74

2.7 Objective vs. subjective sleep and awake epochs for MDD patients . . . . 74

29



3.1 Static evaluation fails to capture a lack of diversity in a dialog model’s

responses, as well as its inability to track the conversation and respond in

emotionally appropriate ways. We argue interactive evaluation is needed

to evaluate dialog models, and show that our novel Emotion+Infersent

(EI) models trained on a larger and more diverse corpus, produce bet-

ter interactive dialog. We present strong evidence that our novel dialog

self-play framework combined with psychologically motivated novel au-

tomated metrics can accurately estimate quality of a model with respect

to its ability to carry out multi-turn open-domain conversations. Here,

examples from one model category are included: Hierarchical Recurrent

Encoder Decoder (HRED) [222]. Similar observations for other model

categories are included in the appendix. * refers to novel elements of our

work, including a new evaluation framework, new model, and dataset. . . 85
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5.1 Quantitative results on 3D Shapes. DISSECT performs significantly

better or on par with the strongest baselines in each category of evaluation

criteria. We observe that the modified variants of disentanglement VAEs

perform poorly in terms of Importance, worse than CSVAE, and signif-

icantly worse than EPE, EPE-mod, and DISSECT. CSVAE, along with

other VAE variants, cannot produce high-quality images, thus achieving

poor Realism scores. On the other hand, EPE, EPE-mod, and DISSECT

generate realistic samples indistinguishable from real images. While the

aggregated metrics for Importance are useful for discarding VAE baselines

with poor performance, they do not show a consistent order across EPE,

EPE-mod, and DISSECT. Our approach greatly improves Distinctness,

especially compared to EPE-mod. The EPE baseline is inherently inca-

pable of doing this, and the extension EPE-mod does, but poorly. For

contextualizing the Substitutability scores, note that the classifier’s pre-

cision, recall, and accuracy when training on actual data is 100.0%. *

Certain VAE methods fail to change the classification outcome. They only

generate samples that produce 𝑓(�̄�) = 0.0. Correlation with a constant

value is undefined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Quantitative results on SynthDerm. The new DISSECT performs consis-

tently best in terms of Importance, Realism, Distinctness, Substitutability,

and Stability. Note that the precision, recall, and accuracy of the clas-

sifier when training on actual data is 97.685%, 100.0%, and 95.381%,

respectively. Anchoring the Substitutability scores to these original values

provides additional context, showing the meaningfully high performance

of DISSECT compared to EPE-mod and EPE and a much larger improve-

ment compared to CSVAE. . . . . . . . . . . . . . . . . . . . . . . . . . 158
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5.3 Quantitative results on CelebA. Importance: We observe that DISSECT

performs similarly and even slightly outperforms the baselines in terms

of Importance scores. Realism: DISSECT achieves a higher Realism

score, suggesting disentangling CTs does not diminish the quality of

generated images and may even improve them. Distinctness: DISSECT

strongly improves the Distinctness of CTs compared to EPE-mod. The

EPE baseline is inherently incapable of doing this, and the extension EPE-

mod does, but poorly. For anchoring Substitutability scores, note that the

classifier’s precision, recall, and accuracy when training on actual data is

95.387%, 98.55%, and 92.662%, respectively. . . . . . . . . . . . . . . . 161

5.4 Summary of a subset of ℒaux iterations. The development goal is to make

the first 𝐾 dimensions of the latent space Important. In some iterations,

we encouraged the remaining 𝑀 −𝐾 dimensions not to be Important to

reduce potential correlation across latent dimensions. . . . . . . . . . . . 163

5.5 Summary of hyper-parameter values. Discriminator optimization happens

once every 𝐷 steps. Similarly, generator optimization happens once every

𝐺 steps. 𝜆𝑟 is specific to DISSECT, and 𝐾 is specific to EPE-mod and

DISSECT. All the remaining parameters are shared across EPE, EPE-mod,

and DISSECT. Note that samples used for evaluation are not included in

the training process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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Chapter 1

Introduction

Recent successes in machine learning have been transformational across a range of ap-

plications from computer vision to natural language processing and beyond [17, 39, 80,

184, 219, 229]. However, examples of deployed models failing to recognize and support

human-centric (HC) criteria are abundant, such as disproportional assignment of risk to

certain demographics [2] or making predictions based on spurious correlations [254]. This

calls for a more successful collaboration between machine learning models and humans to

better formalize some of the nuanced HC criteria and to develop computational tools for

inspection and introspection in model development with respect to them.

Mutual understanding is known to be a critical element in effective communication

between people [154]. The same argument can be extended to collaboration between

machines and humans: A machine learning model can better adjust to human needs

and preferences by inferring human’s state and intention [190], and equipping people

with tools for better interpretation and investigation of models could lead to advances in

scientific understanding, improving safety, uncovering hidden biases, evaluating fairness,

and beyond [31, 45, 78]. In this thesis, I conceptualize the space of machine and human

interaction with respect to these two components (Figure 1-1): interpretation of people by

machines and interpretation of machines by people. Throughout the chapters of this thesis,

I show that improvements across both axes could bring us closer to HC optimality.
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Figure 1-1: A conceptual framework for machine learning and human interaction with respect to human-
centered optimality and how the thesis roadmap fits within this framework. The 𝑥-axis shows interpretation
of machines by people: techniques that allow humans to investigate decision making of machine learning
systems. Tools that facilitate investigation and interpretation can empower humans to identify potential
failure points and inform actionable directions for improvement. Higher 𝑥 values represent increasing
flexibility of investigation through interpretation tools. The 𝑦-axis represents interpretation of people by
machines: endowing machines with mechanisms to support, infer, or adapt to human states. More accurate
inference can lead to better adaptation of machines to human preferences or improved tools for managing
states, such as personal wellbeing. Higher 𝑦 values represent more comprehensive consideration of human
state. The origin represents no interpretation of machines by humans (𝑥 = 0) and no consideration of human
state (𝑦 = 0). Previous work has been presented with respect to this conceptual framework: (a) Attempts at
predicting mental health (e.g. [23, 88, 157, 236]) and a broader set of self-reported wellbeing metrics (e.g.
[12, 13, 24, 88, 129, 142, 161]), (b) Detecting physiological signals such as pulse and breathing rate (e.g. [26,
97, 99, 184]) (c) Automated metrics of dialog quality (e.g. [4, 56, 143, 166, 182, 204]), (d) Interpretability
by weighing sample importance (e.g. [120, 122, 128, 260]), (e) Interpretability based on saliency maps (e.g.
[51, 150, 233, 237]), (f) Uncertainty quantification in deep learning settings (e.g. [58, 59, 118, 180, 216]),
(g) Interpretability based on high-level concepts (e.g. [22, 76, 123]), (h) Interpretability through generative
explanations (e.g. [38, 117, 209, 230]).
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The first component is interpretation of people by machines. That means building

machines that can accurately infer human state to better adapt to user preferences, be

attuned to their needs, provide higher quality interactions, or help people better manage

aspects of their state such as health and wellbeing by anticipating changes that might

jeopardize their health. Across different domains ranging from interactions with a chatbot

to depressive symptom management in outpatient clinical settings, one major challenge is

how to make accurate inference without increasing the burden on the human by requiring

them to explicitly self-report their evaluations. A possible solution is learning from their

measurable physiological, behavioral, or implicit social cues that are ubiquitous and

naturally available through their interactions with machines.

The second component is interpretation of machines by people. This means developing

techniques that aid humans to investigate machine learning systems and translate com-

plexities of decision boundaries into a language that humans can interpret and act on by

identifying potential failure points and informing actionable directions for improvement.

This can be done through a variety of mediums of explanation. It can range from providing

numerical estimates of uncertainty [30] to tools that enable people to ask what-if questions

[3]. One of the open questions in this space is the degree to which uncertainty quantifica-

tion can help disambiguating sources of bias, such as annotator disagreement, data bias, or

inherent task difficulty [118]. Another challenge is how to develop flexible interpretability

tools that are better aligned with humans’ cognitive processes such as how they justify

decisions [3] and learn [7, 18, 250].

1.1 Inferring Human State

Among affective phenomena, detecting depressive symptoms is of utmost importance.

Depression hampers cognitive processes such as attention, memory, perception, and

decision-making [6, 9, 44, 47, 47, 136, 190] and is the leading cause of ill health and

disability world-wide [252]. Estimating depressive symptoms from passive sensing using
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wearable sensors and phone sensor data paves the way to tracking symptoms in-between

clinical visits, predicting the course of illness, capturing variations of the disease over time,

and providing just-in-time interventions to manage the disease.

There is promising evidence on the feasibility of inferring affective phenomena such

as wellbeing, mental health, mood, and stress from a combination of physiological and

behavioral data such as location patterns, surveys, smartphone usage, whether information,

wearable electrodermal activity, accelerometer, and heart rate data [13, 23, 24, 88, 129,

142, 161, 236]. However, there remains a set of challenges. Most previous work has

low detection accuracy, typically below 80% [12, 88, 142], which hinders its successful

real-world deployment. Additionally, most of these machine learning solutions have been

trained on data gathered through constrained conditions that don’t resemble real-world

scenarios and they have rarely been compared with clinically validated measurements of

mental health.

Implementing capabilities of inferring humans’ affective states can make technology

more human-centered in day-to-day applications as well. Since affective states influence

memory [84, 119, 136], perception [47, 98, 188, 255], attention [47], decision making [6],

interpretation [9], creativity [33] and many of our cognitive processes [44, 190], taking

them into account can lead to improved experiences by catering to human preferences and

needs more effectively across applications. For example, a visual interface can present

visual information differently depending on the user’s affective state to ensure it is perceived

[188, 255]; a todo list can suggest completing creative tasks more frequently when the user

is in a positive mood [33]; an automated tutoring system can facilitate learning by taking

into account the user’s state and its interaction with memory formation and retrieval [43];

more generally, by inferring their affective states, machines can anticipate users’ needs

more accurately and be more effective across a spectrum of applications [190].
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1.2 Inferring Human Feedback through Interaction

Inferring user opinion through implicit feedback has led to significant improvements in

domains such as recommendation systems [177]. Collecting star ratings and gathering

thumbs up/down button presses mostly known as explicit feedback has high quality;

however, it is not as scalable as implicit feedback such as purchase history, browsing

history, search patterns, or mouse movements. The sparsity and cost of explicit feedback

ultimately renders it less useful than implicit signals in practice [106].

Such benefits can extend to affective and social cues that are ubiquitous, yet mostly an

untapped resource. Humans are developed and socialized to communicate rich information

through social cues, such as body language, facial expressions, and their tone of voice.

Many of these social cues are not unique to human-human interaction, but also naturally

arise when interacting with machines [201]. Being able to infer such signals could lead to

improved systems that adapt to their users’ needs and preferences, and learn from their

feedback more efficiently and effectively.

One application area where harvesting these implicit affective cues can be of high

impact is open-domain dialog. Current methods fail to produce key aspects of good quality

conversation, such as staying on topic, not being repetitive, and generating emotionally

appropriate responses. This is in part due to the widely used evaluation criteria that poorly

capture conversation quality as judged by humans [145]. However, this is a setting in

which humans naturally provide social cues in abundance. I show in this thesis that these

implicit signals are an untapped resource and inferring such cues can significantly improve

how we evaluate dialog systems.

1.3 Estimating Uncertainty of Machine Predictions

Uncertainty of predictions can arise for several reasons: measurement error, model pa-

rameters and structure, and the list goes on [58]. Quantifying and communicating the
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uncertainty of automatic predictions is consequential for AI safety. It can potentially

prevent a range of unintended failures across domains such as medical diagnostics and

autonomous driving [53, 58, 164]. Communicating predictive uncertainty can help people

interpret the context of predictions, anticipate when uncertainty might be irreducible,

prioritize gathering more diverse data, changing the model, or soliciting other sources of

information.

In common practice today, most deep learning models have been viewed as determinis-

tic functions providing only point estimates. As eloquently reviewed in [61], probabilistic

modeling, uncertainty, and Bayesian precursors to neural networks have existed for years

(e.g. [102, 152, 174]). In the past few years, additional tools for practical uncertainty

estimates to equip these models with Bayesian qualities have been proposed [58, 59, 118],

leading to increased adoption of uncertainty estimation techniques for deep learning meth-

ods. The utility of these methods has been studied under dataset shift through empirical

work [180] and compared to post hoc uncertainty [216]. However, there remain several

open questions, especially in complex phenomena where annotators can legitimately

disagree.

Consider the scenario of predicting facial expressions from a face image. Many

different causes could result in low confidence predictions. A photo might be nuanced

in its emotional expressions, making it even hard for humans to assign labels to it. In

such cases, the subjectivity of annotations and their disagreement can lead to uncertain

predictions by the machine, too. There might be occlusions in the image. For example, a

face mask covering the mouth area makes it hard to identify the expression. The photo

might be low quality. For instance, due to poor lighting conditions, it might be challenging

to see the face, resulting in uncertain predictions. To what extent can we characterize and

disentangle these sources of uncertainty, such as annotator disagreement and data bias and

task difficulty, and how do we translate these into actionable directions for improvement?
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1.4 Tools for Investigating Machine Predictions

Humans’ ability to reason, imagine, draw insights from sparse interactions, and transfer

their knowledge across contexts by far exceeds what our current computation methods

are able to accomplish. While sharing machine predictions along with their predicted

uncertainty is useful for human interpretation and intervention, it is not powerful enough

to satisfy many of the questions raised by human insight and advanced cognition [3].

Developing computational tools for inspection and introspection in model development

that are more aligned with humans’ learning and decision making processes [3, 7, 18, 250]

can be an impactful step toward a more human-centered approach.

It is argued that empowering humans with additional tools for investigation and in-

terpretation of machine learning decision making processes is a promising venue that

could lead to better outcomes in terms of scientific understanding, improving safety, un-

covering hidden biases, evaluating fairness, and beyond [31, 45, 78]. Many efforts in

machine learning interpretability methods have been working towards providing solutions

for this challenging problem. One way to categorize them is by medium of explanations,

some post hoc methods focusing on importance of individual features, such as saliency

maps [51, 150, 233, 237], some on importance of individual examples [120, 122, 128, 260],

some on importance of high-level concepts [123]. There has been active research into

the shortcomings of explainability methods (e.g. [1, 111, 193, 224, 253]). For example, it

has been shown that attention weights can be manipulated without hurting accuracy and

result in misleading interpretations [193], adversarially constructed dissimilar attention

distributions can lead to similar predictions [111], and some existing saliency methods are

independent of the model and the data generating process [1] which renders them unfit

for explaining the relationship between inputs and learned outputs. Scholars have also

proposed tests to determine when attention can be used as an explanation [253].

All of these methods focus on mediums that already exist in the data–either by weight-

ing features or concepts in training examples, or by selecting important training examples.
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Guided by recent progress in generative models [27, 101, 124, 131, 147], another family

of explainability methods have emerged that provide explanations by generating new

examples or features [38, 117, 209, 230]. The goal of these methods is to use generated

examples to highlight particular aspects or factors that contribute to classifier’s decision or

produce counterfactuals.

One of the key benefits of counterfactual generation is allowing users to explore "what-

if" scenarios through what does not and cannot exist in the data, which makes them a great

tool for making classifier decisions plausible [247]. Using counterfactual generation for

investigating a classifier’s decisions, one can ask: what if this sample were to be classified

as the opposite class, and how would it differ? It has been argued that humans also justify

decisions via counterfactuals [3], and children learn through a similar process [7, 18, 250].

Additionally, in-depth user studies have shown that examples have been the most preferred

means of explanation by users across visual, auditory, and sensor data domains [115].

As I show in this thesis, current counterfactual explanation techniques fall short of

simultaneously satisfying desired interpretability properties such as distinctness, compati-

bility, realism, substitutability, and stability. Distinctness [162] suggests that inputs should

be representable with non-overlapping concepts. Compatibility with classifier [230] or

classification model consistency [231] suggests that changing the explanation should pro-

duce the desired outcome from the classifier. Realism or data consistency [230] suggests

that perturbed samples should lie on the data manifold to be consistent with real data. In

other words, the generated samples should look realistic when compared to other samples.

Substitutability suggests that explanations should preserve relevant information [209].

This quality has sometimes been referred to as fidelity [162, 192]. Stability [75, 162, 192]

refers to the coherence of explanations for similar inputs. In this thesis, I introduce a

method that addresses this challenge.
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1.5 Thesis Roadmap

In Chapter 2, I present our work on approximating depressive symptom severity based on

phone and wearable sensor data in an outpatient clinical setting. This chapter addresses

several challenges mentioned in Section 1.1 by studying a real-world setting and validation

against high-quality scores provided by clinicians. Collecting measurable real-world

behavioral and physiological data allows for more scalable, accurate, and less burdensome

symptom tracking and can overcome limitations of current office-based clinical interviews

and self-reports in diagnosis and treatment of major depressive disorder. I show that using

longitudinal data including electrodermal activity, heart rate and heart rate variability,

motion, temperature, location patterns, social interactions, and phone usage, we achieve

less than 8% error rate in predicting Hamilton Depression Rating Scale (HDRS) scores. I

provide additional analyses identifying the most informative features regarding depressive

symptomatology. In addition, we have investigated the association between depressive

symptoms and several modalities in depth (e.g. location, incoming calls, sensor-recorded

vs. self-reported sleep) to help make the human state reading more explainable.

In Chapter 3, I present our work on approximating human judgements of quality

through inferring implicit signals in interactive text-based communications [63]. I in-

troduce an automated metric that is better correlated with human evaluations than other

alternatives and successfully address one of the challenges in open-domain dialog as

mentioned in Section 1.2: poor correlation between automated evaluation metrics and

human judgements [145]. While open-domain dialog is sometimes referred to as “non-goal

oriented dialog"[212], many argue that it does serve a goal: responding to the human

need for connection, affection, and social belonging [109]. Additionally, it could pave

the way for more seamless language learning tools or computer game characters [222]. I

identify limitations of static evaluation and provide evidence for added benefits of inter-

active human evaluation; I then introduce a novel, model-agnostic, and dataset-agnostic

method to approximate it. While state-of-the-art methods predominantly use word-level
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overlap [4, 143, 182] or distance metrics based on embedding resemblance to each turn

of the conversation [56, 166, 204], we propose to take into account the trajectory of the

conversation and use proxies such as sentiment, semantics, and user engagement that

are psychologically motivated [11, 79, 95, 108, 110]. In particular, I propose a self-play

scenario where the dialog system talks to itself and calculate a novel metric that is the

combination of the aforementioned proxies. I show that this metric is better aligned with

the human-rated quality of a dialog model than other automated metrics commonly used

today [8, 56, 166, 204, 226], as measured by Pearson correlation. We perform extended

experiments with a set of models, including several that make improvements to recent

hierarchical dialog generation architectures through sentiment and semantic knowledge

distillation on the utterance level.

In Chapter 4, I investigate uncertainty quantification and its connection to sample

difficulty, data bias, and annotation disagreement to address the questions posed in Section

1.3 regarding the decomposition of sources of uncertainty and deriving actionable directions

from them. We characterize interpretability benefits of uncertainty quantification for

complex phenomena where annotators can legitimately disagree, such as facial expression

identification [62]. Prior work includes numerous attempts to model annotators, their

biases, and skill levels in crowd-sourcing literature to use labels more effectively and

efficiently. (e.g. [121, 170, 200, 240, 251]). However, to what extent a simple uncertainty

quantification technique can provide such insights is poorly understood. We demonstrate

how adding Monte Carlo dropout to a classical network provides measures of uncertainty

and helps disambiguate data bias and inter-rater disagreement. We confirm that this

characterization also provides a proxy for Brier Score, a measure for the accuracy of

probabilistic predictions [15].

In Chapter 5, I present a novel method that allows humans to investigate the decision

making process of a predictor [64] and tackle the challenges discussed in Section 1.4: How

to develop a method that simultaneously satisfies desirable qualities of an explanation tool

and anticipates what changes in the input might lead to certain changes in the predictor’s
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output. Such a method allows counterfactual reasoning by answering what if an input

sample were to be classified as the opposite class by the predictor-under-test. The proposed

technique generates Concept Traversals (CTs), which are defined as a sequence of gener-

ated examples with increasing degree of concepts that matter for a classifier’s decision.

CTs are generated by jointly training a generator, a discriminator, and a CT disentangler,

together to generate examples that (1) express one factor at a time that is influential to

a classifier’s decision that are distinct from each other, (2) are coupled to the classifier’s

reasoning due to joint training (3), are realistic (4), preserve relevant information, (5)

and are stable across similar inputs. I compare our method against several baselines,

of which some have been optimized for disentanglement, some are extensively used for

explanation, and some fall in between. Our method is the only technique that performs

well across all dimensions. I evaluate our method using these datasets: 3D Shapes [19],

CelebA [146], and a new synthetic dataset inspired by the challenges faced in dermatol-

ogy domain [65]. I also discuss applications of this work for detecting potential biases

of a classifier, investigating its alignment with expert domain knowledge, and identifying

spurious artifacts that impact predictions using simulated experiments.

Finally, Chapter 6 concludes by summarizing the contributions of this thesis and

proposing future research directions.
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Chapter 2

Estimating Depressive Symptoms from

Patient’s Physiological and Behavioral

Data

Depression is the major cause of years lived in disability worldwide; however, its diagnosis

and tracking methods still rely mainly on assessing self-reported depressive symptoms,

which originated more than fifty years ago. These methods usually involve filling out

surveys or engaging in face-to-face interviews. They are costly to track and scale and

provide limited reliability and accuracy in predicting treatment response, remission, and

relapse. Broader anatomical and neurophysiological understanding of emotion, behavior,

and cognition and their disorders could lead to finding biomarkers that are scalable and

have improved reliability and accuracy in disease prognosis. In this chapter, we develop

and test the efficacy of machine learning techniques applied to objective data captured

passively and continuously from E4 wearable wristbands and sensors in an Android phone

to predict the Hamilton Depression Rating Scale (HDRS). Input data include electrodermal

activity (EDA), sleep behavior, motion, phone-based communication, location changes,

and phone usage patterns. We introduce our feature generation and transformation process,

imputing missing clinical scores from self-reported measures, and predicting depression
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severity from continuous sensor measurements. While HDRS ranges between 0 and 52,

we were able to impute it with 2.8 RMSE and predict it with 4.5 RMSE, which are low

relative errors. These error rates are calculated on a hold-out set of clinician-rated HDRS

scores. Analyzing the features and their relation to depressive symptoms, we found that

poor mental health was accompanied by more irregular sleep, less motion, fewer incoming

messages, less variability in location patterns, and higher asymmetry of EDA between the

right and the left wrists.

2.1 Introduction

Depression is the leading cause of ill health and disability worldwide: According to the

latest estimates from WHO, more than 300 million people are now living with depression,

an increase of more than 18% between 2005 and 2015 [252]. Historically, diagnosing and

tracking depressive symptoms has been accomplished through periodic assessment with

structured or unstructured clinical interviews using standardized symptom rating scales.

This approach, which was invented in the 1960s, is based largely on subjective self-report,

and has limited utility in fully characterizing clinically meaningful subtypes of depression.

Also, this current “descriptive" way of diagnosing depression is limited in its ability to

predict the course of illness or to capture variations of the disease over days.

An important paradigm shift is happening today: Psychiatry and the clinical neuro-

sciences are moving from relatively narrow neurochemical models of disease, based on

inferences about the pharmacological mechanisms of available psychotropic medications,

to broader anatomical and neurophysiological understanding of emotion, behavior, cogni-

tion and their disorders [91]. This shift is important, not only because it provides a new

understanding of the neuroscientific basis of psychiatric disorders, but also because it

leads to the development of novel strategies for diagnosis and assessment. Researchers are

increasingly developing objective mobile data-driven biomarkers for many healthcare con-

ditions, including depression (e.g. [133]). We anticipate that the development of reliable
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biomarkers will help improve the diagnosis and assessment of depression, prediction of

treatment response, and early detection of response, remission and relapse. To date, there

is no set of reliable biomarkers to assess depression.

In this work, we advance the state of the art in the development of biomarkers by

providing a new way, based on passive sensing, to estimate depressive symptoms as

measured by the Hamilton Depression Rating Scale (HDRS). The method utilizes data

from E4 wearable sensors [49] and embedded sensors within an Android phone. Experience

sampling, continuously capturing self-reported depressive symptoms, can be overwhelming

for a patient in the long-run. Being able to estimate HDRS scores accurately using passive

data could potentially improve the scalability of depression prognostication as well as its

objectivity. In the meantime, it enables a fertile ground of research for providing timely

interventions to individuals who show signs of relapse. Also, we believe that there is more

value in a regression analysis as opposed to a classification between different severity

levels of depressive symptoms. With regression, we may obtain a more accurate and

precise understanding of the progression of the disease.

In our dataset, HDRS has been captured bi-weekly by a clinician, as part of their

standard practice. Thus, we utilize a two-step prediction process: First, we use a surrogate

(self-reported data) to predict HDRS and in doing so, impute the missing HDRS values

(from the dates when the HDRS was not assessed by a clinician, approximately 13 values

in between two consecutive visits) to construct an increased dataset “HDRS-I". Second,

we use the passive phone and wearable sensor measures for predicting the HDRS-I values.

2.2 Background and Related Work

Over the past decade, affective computing researchers have utilized wearable sensors and

phone usage patterns to detect stress, happiness, and mental wellbeing (e.g. [114, 156]).

We hypothesize that similar underlying phenomena quantifying mood can help assess

mood disorders as well.
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Numerous researchers have demonstrated the use of mobile-based Experience Sampling

Methods to monitor people’s depression, e.g. [169, 241]. In these studies, the depressed

patients are asked to fill out regular surveys about mood, behavior, sleep etc. on their

mobile phones. The self-reports have several limitations. They can be unreliable as

the response rate may depend on the current mood of the patients. Moreover, they are

subjective since such logs are recorded by the patients themselves and the answers may

vary with factors including mood, weather, social-demands, or patient’s memory. Finally,

frequently answering the mobile surveys is cumbersome, which may introduce bias or

result in reduced adherence.

Several studies have proposed to measure passively objective parameters in controlled

environments (hospital or laboratory). One of the first efforts to assess how long-term

physiology and behavior of individuals are correlated with changes in depression was the

LiveNet project [238]. The LiveNet platform, which monitored skin conductance, heart

rate, activity and voice, was evaluated on six psychiatric inpatients. More recently, Valenza

et al. [244] demonstrated the use of electrocardiogram and respiration signals collected in

a hospital to assess depression. Although these studies show promising results, we aim at

a harder problem: to continuously and unobtrusively monitor people during daily life in

order to identify possible biomarkers of depression.

The MONARCA project [159], which developed tools for assessment and prediction

of mood episodes in bipolar disorder, focused on analytics tools and validating them with

a group of 20 patients. Also, scholars have studied phone usage correlates of mental health

and depressive symptoms (e.g [194, 205]). Other researchers have looked at audio/visual

cues including facial expressions, head movement, vocalization, and vowel production

to predict depression severity (e.g. [41, 214, 245]). However, many of these studies

have been validated based on self-reported standard depression scales, like Patient Health

Questionnaire (PHQ-9) [130], rather than on clinical measurements. In this work, we aim

to fill the gap by including clinical assessment of depressive symptoms using Hamilton

Depression Rating Scale (HDRS) as scored by the expert clinician in a patient interview.
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The clinical form of HDRS data is collected in a face-to-face meeting bi-weekly as it has

been demonstrated that intensive assessment of depression may have a positive impact on

the assessment score [16]. We then impute the depression level of the remaining dates

using Machine Learning that incorporates daily patient self-reports.

Most previous work has addressed a classification problem, usually binary, within this

area [89, 158]. Some captured only categorical label variables, while others transformed

an inherent regression problem into a classification problem, and in doing so relaxed the

problem; for example, they only included the highest and lowest values of the depression

range and did not address the “middle". However, depressive symptoms change contin-

uously and which way they are shifting is important. To better understand and prevent

worsening of depression, it is not enough to distinguish between extremely severe and

extremely mild depressive symptoms: We aim to measure progressive change of symptoms

in order to enable just-in-time interventions before depression becomes severe.

2.3 Study Protocol

Patients diagnosed with MDD from Massachusetts (n=12) completed an 8-week protocol.

Participants included 9 females and 3 males from white, hispanic, african-american, and

asian races and aged between 20 and 73 years old (mean=37, std=17). The protocol

involved tracking depressive symptoms and mobile phone usage. Movisens [172] was

used to measure incoming and outgoing text messages and phone calls, location, app

usage, and screen on/off behavior. Patients also wore Empatica E4 wristbands [49] that

recorded accelerometer data and electrodermal activity 23 hours a day. Measurements

were processed to obtain daily aggregate measures. Participants were clinically assessed

for depression symptoms biweekly using the HDRS. Tab. 2.1 summarizes the number of

observations for each modality. In the next section, we explain the detailed measurements

in each modality and the feature generation.
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Modality # of Datapoints
Physiological signals 540
Phone passive usage data 605
Interactive surveys 503
Clinical measures 59

Table 2.1: Dataset summary after computing daily features.

2.4 Feature Architecture

2.4.1 Physiological Signals

E4 sensors worn on each wrist captured continuous electrodermal activity (EDA) via

the measurement of skin conductance (4Hz sampling rate), temperature (4Hz sampling

rate), and 3-axis accelerometer data (32 Hz sampling rate). In order to better understand

the user’s behavior within the day, we introduce 6-hour intervals, labeled as morning,

afternoon, evening, and night. The 6-hour interval provides a balance between granularity

and ratio of missing values. We also calculate aggregate daily measures. Any feature

explained below has been calculated for all these intervals.

We first filtered out the EDA signal when the corresponding skin temperature was

below 31°C to exclude the measurements when the sensor was not worn. Then we applied

the 6th order Butterworth low-pass filter (1Hz cutoff frequency). We calculated mean EDA

and the fraction of time the sensor was recording the signal. We also computed the number

of skin conductance response (SCR) peaks and their average amplitude using the method

from Gamboa [60]. There are indications that skin conductance level may distinguish

between depressed and healthy individuals [248]. Also, previous research has shown that

asymmetry in EDA between the wrists can provide extra affective information [191]. Thus,

we also encoded asymmetry in different ways: the difference between average EDA value,

difference between number of SCRs, and difference between SCL and SCR signals using

a convex optimization approach recommended by [87].

We applied the 5th order Butterworth low-pass filter (10Hz cutoff frequency) to the
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accelerometer data. We then translated the output into motion features by calculating the

vector magnitude for the 𝑡th sample, 𝑉𝑡, of the z-axis acceleration data using the following

formula:

𝑉𝑡 =
𝑡∑︁

𝑖=𝑡−𝑁

|𝑅(𝑧,𝑖) −𝑀(𝑧,𝑖)| (2.1)

where 𝑅(𝑧,𝑖) is the raw z-axis (perpendicular to the skin) acceleration of 𝑖th sample, 𝑀(𝑧,𝑖)

is the running mean in a 5-second window of the z-axis signal preceding the 𝑖th sample,

and 𝑁 is the number of raw data samples received in one second.

Next, we calculated average, median, and standard deviation of motion for the men-

tioned time intervals as well as the fraction of time in motion. We also kept meta-data such

as the fraction of time within the time interval that the data were not missing.

We calculated objective sleep based on accelerometer data for 30 second epochs using

the ESS method described in [14]. We calculated sleep duration, sleep onset time (time

elapsed since noon), maximum duration of uninterrupted sleep, number of wake-ups during

the night, and the time of waking up (time elapsed since midnight). We also computed a

sleep regularity index (SRI) [28]:

𝑆𝑅𝐼 =
1 +

1

𝑇 − 𝜏

∫︀ 𝑇𝜏

0
𝑠(𝑡)𝑠(𝑡 + 𝜏)𝑑𝑡

2
(2.2)

where data were collected for 𝑦 = [0, 𝑇 ], 𝜏 = 24, 𝑠(𝑡) = 1 during sleep and 𝑠(𝑡) = −1

during wake. The SRI ranges between 0 (highly irregular sleep) and 1 (consistent sleep

every night). We also included meta-data such as the fraction of time that data were being

recorded over nighttime (between 8pm-9am) as well as over the period of 24 hours.
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2.4.2 Phone Passive Usage Data

We utilized Movisens [172] on Android to collect measures of how the participant is

using his or her mobile phone and how s/he is interacting with other people using the

mobile phone. More specifically, we captured meta-data of calls, text messages, app usage,

display on/off behavior, and location. Passive data were captured 24/7. The content of

the calls/texts, actual phone numbers, websites visited, and the content of the applications

were not collected.

Following the steps of previous researchers in generating features from passive phone

data [114], we introduce 3-hour intervals in order to better understand the user’s day-

time behavior. For example, [6am-9am] represents early morning while [9pm-12am]

corresponds to late evening. We also calculate aggregate daily measures.

For quantifying call data, we calculate the number of incoming, outgoing, and missed

calls daily and over the 3-hour periods within the day. In a similar manner, we calculate

mean, median, and standard deviation (SD) of the duration of incoming, and outgoing

calls. Finally, we calculate the incoming/outgoing ratio both for the number of calls and

the duration of calls on a daily basis.

For quantifying SMS data, we use a similar approach, we calculate the number of

incoming and outgoing texts daily and over 3-hour periods within the day. We also

calculate a daily incoming/outgoing ratio of the number of text messages received or sent

respectively.

Turning the display on/off is also an indication of phone usage. Thus, we look at the

mean, median, and SD of duration of screen on within the mentioned intervals. We also

calculate the number of the times the screen has been turned on over these periods. Note

that these two correspond to different behaviors; Long screen-on duration is related to

actively using the phone while a great number of screen-ons is related to consistently

checking the phone which might be a sign of anxiety or anticipation.

For location data, we calculate mean, median, and SD of latitude and longitude along
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with the number of data points that have been captured for each time period. We calculate

total location mean, median, and SD by averaging values from latitude and longitude.

For app usage, we encode the app category using the following list: game, email,

web, calendar, communication, social, maps, video streaming, photo, shopping, and clock.

Then, we calculate the total duration and the number of app category usage in the different

mentioned time intervals.

2.4.3 Interactive Surveys

Using the Movisens [172] on the mobile phone, we administer short questionnaires about

overall health condition, sleep, mood, stress, anxiety, alcohol/drugs/caffeine usage, and

social interaction; these should be completed each day upon awakening, at bedtime and

twice during the day at random times, during the entire length of the study. For assessing

mood, we have used Positive and Negative Affect Schedule (PANAS)[249], one of the

most prevalently used scales for measuring affect. The 20 item questionnaire has been

split into two 10-item questions that were administered twice during the day at random

times. Each question is a five-point Likert scale, one indicating not at all and five indicating

extremely. The average of two mid-day scores constitutes the daily PA and NA scores.

The minimum possible value is five, and the maximum possible value is 25.

First, we preprocessed the data: we added how long it took the participant to fill in

the survey and removed responses that took less than a second and are likely noise. This

meta-data can also be informative; for example, long pauses while responding to surveys

may represent motor slowing (a common symptom of depression), cognitive load, trouble

remembering, or not being sure about the response. Short response time, on the other

hand, may represent trivial answers or not reading through the questions. We calculate

total alcohol (standard drink measure) and caffeine consumption (milligram) by summing

the relevant features from the survey. We convert categorical features to their one-hot

representation. We include day of the week as it has been shown to influence the aggregate
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number of smiles which can be an indication of positive valence mood [96].

Since HDRS is closely related to self-reported mood, we add more detailed mood

information. First, we calculate total positive affect (PA) and negative affect (NA) on a

daily basis by averaging responses to relevant survey questions. We include an average

of the past week’s PA (
∑︀𝑡

𝑖=𝑡−7 𝑃𝐴𝑖/7), and NA (
∑︀𝑡

𝑖=𝑡−7𝑁𝐴𝑖/7). We also include a

weighted average of PA, when the effect of affect diminishes exponentially overtime when

going back in history, e.g., yesterday’s mood is half as important as today’s mood in the

weighted average measure:
∑︀𝑡

𝑖=𝑡−7 2𝑖−𝑡 * 𝑃𝐴𝑖. We included a similar feature for NA, as

well:
∑︀𝑡

𝑖=𝑡−7 2𝑖−𝑡 *𝑁𝐴𝑖.

We calculate the NA/PA ratio for the daily 1, average weekly, and weighted average

weekly measures. To capture mood oscillation, we include the standard deviation of mood

both PA and NA on a weekly basis and for the duration of the study.

2.4.4 Clinical Measures

During each biweekly visit, participants are assessed by the clinician for depressive

symptoms using the HDRS. HDRS is a standard test for quantifying depressive symptoms

which ranges between 0 and 52. Tab. 2.2 summarizes the depression severity in relation to

HDRS.

HDRS Depression Severity
0-7 Normal
8-13 Mild Depression
14-18 Moderate Depression
19-22 Severe Depression
≥23 Very Severe Depression

Table 2.2: HDRS values and levels of depression severity.

1The minimum possible value for either PA or NA is five. Thus, division by zero would never happen.
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2.5 Models

2.5.1 Feature Transformation and Selection

Combining the carefully-crafted features results in over 700 features for our dataset.

Compared to the small number of data points we have, this number of features can easily

result in over-fitting the model to the training set. One possibility is to use regularization

tricks such as L1 to enforce selection of only a small number of features. However, for

features that are non-linearly related, transforming the features into a new space through a

non-linear transformation can be more beneficial. For example, several noisy measurements

of a similar phenomena may not be informative on their own, but a transformed version

of them can be a better predictor. Toward this end, we tested PCA, kernel PCA with

radial-basis function kernel, and truncated SVD methods to reduce the dimensionality of

our feature-set. We bound the number of selected features while keeping as few features

as possible to explain the variance of data.

We created 3 datasets: one including all features (daily and over multiple intervals

mentioned above), one including daily features, and one including the daily features con-

catenated with the features of the previous day. We conducted the feature transformations

on these three datasets.

2.5.2 HDRS Imputation Based on Survey Data

Several studies have confirmed relationships between self-reported affect and clinical

ratings of depression. In our dataset, we see a strong correlation between average weekly

negative/positive affect (𝑀 = 0.86, 𝑆𝐷 = 0.38) and HDRS scores (𝑀 = 19.64, 𝑆𝐷 =

7.60), 𝑟 = 0.70, 𝑝 = 0.00, 𝑛 = 442. This observation suggests utilizing self-reported

survey data to estimate the gold-standard measure in between clinical assessments. We

impute these values and refer to them as HDRS-I to distinguish them from clinician-rated

2Data points with missing mood reports from surveys have been removed from this analysis. This reduces
the number of data points from 59 available HDRS measurements to 44 for this section’s analysis.
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Figure 2-1: Normalized histogram of the original HDRS scores (left-green) and the imputed
HDRS-I scores (right-red).

HDRS scores. The input features included daily PA, NA, and NA/PA ratio. We have also

included average and standard deviation of these values over the past week and over the

whole period of the study for the patient. Also, weekly weighted average of these values

have been included where the effect of affect diminishes exponentially over time. We then

impute the missing values to construct an almost 10-times-larger dataset 3. We experiment

with two methods to predict the HDRS score from survey data: regularized regression and

robust-to-outlier methods. After choosing the best-performing model, we employ it for

imputing HDRS-I scores used for training the model discussed in the next section.

Regression Models

The regression methods include lasso, ridge, and elasticNet which use L1, L2, and a com-

bination of the two as regularization metrics, respectively. Note that the L1 regularization

term acts as a feature selection mechanism by pushing coefficients of most of the variables

to be exactly zero, while L2 pushes many coefficients to near zero values but does not

remove them completely. We also included regression without regularization with the

reduced and transformed features.

3Ideally, it would results in a 14-times-larger dataset. But due to missing values and clinical visits not
happening exactly every 14 days, this step results in a almost 10-times-larger dataset.
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Figure 2-2: Distribution of depression categories based on original HDRS scores (left-
green) and imputed HDRS-scores (right-red).

Robust Models

To be robust against outliers or errors in formulation of the model, we include Theil-Sen

estimator, random sample consensus (RANSAC), and huber algorithms. These models

have a built-in sampling procedure that allows a fraction of data points to be outliers.

Validation

For validation, we split the data into 90% training and 10% testing. We use leave-one-

datapoint-out cross-validation on the training set to select the best model and use it for

imputing missing HDRS values.

2.5.3 HDRS Prediction Based on Sensor Data

After imputing HDRS scores, the new dataset HDRS-I contains over 500 points. In this

prediction phase, we train a model using HDRS-I data-points and test it on original HDRS

scores. This dataset is still not large enough to be able to benefit from state-of-the-art neural

network techniques. For example, long short-term memory (LSTM) network, a strong

model that retains temporal information, performs as well as predicting the average value.

We ran LSTM on the dataset as well as an augmented version of it. For augmentation, we
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Figure 2-3: Time-series of Original (HDRS), imputed (HDRS-I), and predicted (HDRS-P)
scores for one sample user over eight weeks. For simplicity, both HDRS and HDRS-I are
shown in green. HDRS-P is shown in red and black for training on HDRS-I values and
testing on HDRS, respectively.

have added 𝑥 * 0.01 * 𝑆𝐷𝑓 to each feature 𝑓 where 𝑥 is a random number between -0.5

and 0.5 and 𝑆𝐷𝑓 is the standard deviation of the values for that feature. Thus, we focus

on models that do not require enormous amounts of training data. Note that self-reported

affect measures have been used only in the imputation phase (HDRS-I) and are excluded

from the current prediction step (HDRS). The HDRS prediction phase solely uses the

passive wearable and phone sensor data.

Regression Models

Similar to the imputation phase, we use lasso, ridge, elasticNet, and unregularized regres-

sion. The following regularization coefficients have been considered: [0.1, 0.5, 1.0, 5.0,

10.0].

Robust Models

Similar to the imputation phase, we use Theil-Sen, RANSAC, and Huber methods. How-

ever, we loop through a larger list of parameters to optimize within each model. For

RANSAC, we consider ratio of minimum samples in the range of [0.1, 0.2, 0.3, 0.4, 0.5].

For Huber method we consider epsilon values in the range of [1.0, 1.35, 1.5] and alphas

in the range of [0.0001, 0.001, 0.01, 0.1, 0.5, 1.0, 5.0, 10.0]. We should note that these
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RMSE Baseline
Model Type Model Parameters Dataset Validation Test Average Median
Regression Regression Kernel PCA subset 5.2 4.9 7.1 7.1
Robust Ransac ms=0.3 Kernel PCA subset 5.0 4.9 7.1 7.1
Boosting AdaBoost n=50, lr=1 Subset data 5.5 4.6 7.1 7.1
Random Forest - n=15 Subset data 5.4 4.6 7.1 7.1
Gaussian Process - 𝛼=0.1, n=5 Kernel PCA subset 5.3 5.5 7.1 7.1
Overall Ensemble k=1 selected by individual models 5.8 4.5 7.1 7.1

Table 2.3: Best prediction model. For the values of hyperparameters used in these experi-
ments, refer to the main text.

models do poorly when the feature set is large. Thus, we only use them for the subsets or

the reduced version of the data.

Boosting

Boosting combines weak regressors sequentially to improve performance. We use adaptive

boosting (AdaBoost) and Gaussian boosting in this category. We experimented with several

hyperparameters such as the number of estimators in the range of [25, 50, 75, 100, 500],

learning rates in the range of [5.0, 1.0, 0.1, 0.001, 0.0001], and linear and squared losses.

Random Forest

Random Forest is an ensemble method with multiple decision trees. We experimented

with different numbers of estimators in the range of [5, 10, 15, 20, 25] for our Random

Forest regressor.

Gaussian Process

We use a Gaussian Process with RBF kernel with length scale 1.0, different regularization

parameters in the range of [1e-10, 1e-8, 1e-6, 0.0001, 0.001, 0.01, 0.1, 0.5, 1.0] and

different numbers of restart points in the range of [5, 10, 50, 100] to model the data.
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Figure 2-4: Original (HDRS), imputed (HDRS-I), and predicted (HDRS-P) scores for
daily data from all patients over eight weeks. For simplicity, both HDRS and HDRS-I are
shown in green. HDRS-P is shown in red and black for training on HDRS-I values and
testing on HDRS, respectively.

Customized Ensemble Method

Finally, we combine the results from these different regressors to get a more robust

estimator. The ensemble method first finds a set of k nearest neighbors from the training

set for each point. It then chooses the model that performs best on that set as the estimator

for this point. The heuristic behind this method is that slight modifications in the feature

set do not change the output drastically. Thus, if a classifier is working well on similar

points, chances are it works well for the current point, as well. Looking at k nearest points

as opposed to only the most similar point is for smoothing purposes. Note that as the

points become higher dimensional, the distance between them becomes less meaningful in

explaining similarity between the points. Thus, we only use the first 5 reduced features

based on kernel-PCA and create a KD tree and find the k nearest neighbors to the point at

hand.

Validation

In real life, some depressed patients see a doctor and get clinical assessments at some point

in their life. One major issue is a high relapse ratio and not being able to regularly visit the

doctor to re-assess the improvement or worsening of depressive symptoms. In such cases,

our method could be easily deployed in real life to passively monitor the patients after the
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diagnosis. Thus, we will assume that we have at least some history for each user.

We use the imputed HDRS-I scores for training and reserve the original HDRS values

for the hold-out test set. Additionally, to mimic the real-life deployment scenario, we do not

include any ratings from the first two weeks in the test set. We use 10-fold-cross-validation

on the training set to select the best model and predict HDRS values.

2.6 Results and Discussion

2.6.1 Imputation Phase

Root mean squared error (RMSE) is the primary metric used to validate the imputation

phase. Table 2.4 shows the selected best model based on having the lowest RMSE on the

validation set. Then we report the RMSE on the hold-out test set for each model. This

model is ridge regression on the subset of mood features from the survey data , obtaining a

test RMSE of 2.8. A baseline prediction of reporting the average or median HDRS score

results in an RMSE of 6.8.

Looking more closely at the model provides insights into how the mood features

correspond to the HDRS score. Consider the coefficients with the highest absolute values:

The coefficient for weekly average positive affect is -9.3, confirming that reported positive

affect is negatively associated with HDRS score. Another interesting observation is

the -7.4 coefficient of the standard deviation of positive mood in the previous week.

Model Information
Name Ridge (L2-Regularized Regression)
Dataset Mood Subset (PANAS)

RMSE

Validation 3.4
Test 2.8
Baseline 1 (Average) 6.8
Baseline 2 (Median) 6.8

Table 2.4: Best performance for HDRS imputation on validation and hold-out test sets as
measured by Root Mean Square Error (RMSE)
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Figure 2-5: Distribution of features that are significantly different between days with good
vs. poor mental health.

Depression is usually accompanied by anhedonia, withdrawal, and loss of engagement,

resulting in a consistently low positive mood. Thus, a normal variation in positive mood

is negatively associated with HDRS scores. This observation is aligned with previous

work on characterization depressive symptoms [175]. At the same time, we see positive

association between the average weekly negative affect and the HDRS score, shown by a

positive 2.8 coefficient.

To further test the validity of the imputation model, we plotted the distribution of HDRS

scores before and after the imputation (Fig. 2-1), and we used the Kolmogorov-Smirnov

(KS) test to compare these two distributions. KS could not reject the null hypothesis of
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samples coming from a common distribution. 4 Moreover, we examined the predicted

levels (based on Table 2.2) of depression severity before and after imputation. Fig. 2-2

shows the bar chart of the distribution of depression severity categories. We also tested

these two discrete-valued distributions and found they were not significantly different5.

2.6.2 Prediction Phase

We primarily validate the new prediction model using RMSE. Table 2.3 shows the best

performing model in each category and the overall customized ensemble method. The test

RMSE for the ensemble method is 4.5 while it is 7.1 for the average or median baseline

prediction.

To provide understanding of the predictions, we have visualized the time-series of

HDRS-I values for a sample user (Fig. 2-3). Each point represents the HDRS-I value

for a day. Green diamonds shows original values (either through clinical assessment or

imputation). Red circles and gray triangles show the predictions for train and test points

respectively. One interesting observation about this plot is the large prediction error in

the highlighted area. A clinician we work with suggested it might be due to the placebo

effect of being in the study. Many patients begin to feel better soon after joining the study,

and report this, but they fall back into their depressed trend after the novelty effect wears

off. We hypothesize that the placebo effect influences momentary assessment of mood

quickly, while it is not adequate to influence behavioral or physiological signals . Thus, we

see the red dots showing that the prediction based on the objective passive data, while it

improves a little, does not improve as much as the self-reported (or their imputed) values.

Fig. 2-4 visualizes the predicted and original values for all the data points from different

users with the same color coding. As shown in both figures, the predictions follow the

overall trend very well but miss the short term variations of HDRS-I. We should note that

4𝐷𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑀 = 21.5, 𝑆𝐷 = 6.4), 𝐷𝑖𝑚𝑝𝑢𝑡𝑒𝑑(𝑀 = 21.2, 𝑆𝐷 = 6.3); 𝑘𝑠− 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 0.08, 𝑝 = 0.83.
The small ks-statistics and large p-value show that we cannot reject the null hypothesis.

5𝑘𝑠− 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 0.01, 𝑝 = 1.00
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HDRS is meant to measure depressive symptoms over the course of two weeks. Thus,

from a clinical perspective, it is not supposed to vary much over consecutive days.

The final prediction based on the ensemble algorithm is a combination of different

methods and sometimes non-linear feature transformations of the “subset data”. To gain

deeper understanding of the relationship between the feature space and the resulting

predictions we create two classes of points: the top 20% and the bottom 20% of the

predicted HDRS-I scores. The former group represents days when the patient is doing

very poorly and the latter represents the days when the patient is doing well or showing

minimal depressive symptoms. We have compared the distribution of all the features from

the “subset data" for these two groups using the KS test. Table 2.5 summarizes the 8 most

significantly different distributions (highest ks-statistics and lowest p-values) and Fig. 2-5

depicts the differences where blue and orange show the good and poor mental health group

respectively. The poor mental health group has more irregular sleep, moves much less

on average, shows less motion variability, and is active a lower percentage of the time.

Also, this group receives fewer incoming messages and has less variable location patterns.

Another interesting finding is the EDA asymmetry. The number of skin conductance

responses (SCR) between left and right wrist are mostly similar in the good mental health

group. However, we see stronger asymmetry (more SCR peaks on the right wrist) for the

poor mental health group. A similar trend is observed in average EDA magnitude.

Category Feature ks-statistic p-value
Sleep Sleep regularity index 0.51 2𝑒− 9

Motion
Average motion 0.49 3𝑒− 10
SD of motion 0.47 3𝑒− 9
Fraction of time in motion 0.44 4𝑒− 8

Communication Daily # incoming SMS 0.44 3𝑒− 9
Location Total SD of location (9AM-6PM) 0.34 8𝑒− 6
Physiology Difference in #SCR peaks (right-left) 0.29 8𝑒− 4

Mean EDA difference (right-left) 0.21 4𝑒− 2

Table 2.5: Most significantly different distributions of feature values for days with good vs.
poor mental health.
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These analyses are based on data from 12 participants from Massachusetts. Further

studies are needed to confirm if the findings are generalizable to other populations, as well.

2.6.3 Limitations and Future Work

HDRS by definition is a biweekly measure, not intended to be captured daily. However,

to be able to utilize the clinician-based ratings, we had to increase our dataset size by

imputing daily HDRS values. Thus, theoretically, imputed values capture an aggregate

measure for overlapping periods of time and are not independent.

In our imputation, we included multiple measures from self-reports, tried different

models, and created a single dataset using the best-performing model. Given the high

percentage of missing HDRS values, adding a stochastic perturbation to the regressed

imputations, generating multiple datasets, and aggregating results on all of them may

reduce bias introduced by the selected model.

We extended this work to a larger dataset with 31 patients, with about 1,500 days of data

[186]. We ran several ablation experiments and simplified the technique without reducing

performance by dropping the imputation phase and using an ensemble of random forest

and boosting for prediction. Then, we compared our method’s performance using different

subsets of features against two individualized baselines: 1) Individual Screen Baseline, 2)

Individual Median Baseline. Individual Screen Baseline is the screen measurement score

of each patient, and Individual Median Baseline is the median of each patient’s scores in

the training set. We evaluated our method in two deployment scenarios: time-split and

user-split. In the time-split scenario, the scores from the last visits of each patient were

reserved for the hold-out test, and in the user-split setting, hold-out users were reserved

for the test set. Our method performed better than the individual screen baseline in both

scenarios. However, it did not outperform the personal median baseline in the time-split

case (Figure 2-6). See [186] for more details. This result is not surprising. Many previous

published works have not reported individualized baselines, and attempts at replicating
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them have failed to outperform such baselines [35, 36]. In the future, we would like to

investigate approaches to overcome this limitation, for example, by minimizing identifying

information in the latent space to improve generalization and learning factors that lead

to variation from personal baselines. Another avenue for exploration is incorporating

few-shot learning approaches for personalization with per-person parametrization.

2.7 Supplementary Materials

2.7.1 Objective vs. Subjective Reports of Sleep Quality in Major De-

pressive Disorder

Sleep patterns in MDD are heterogeneous: both insomnia and hypersomnia are symptoms

of depression. Assessment of sleep patterns in MDD is often limited by clinicians’ reliance

on subjective self-reported ratings of sleep. Objective measures, such as sleep regularity

measured by accelerometer data, may provide a more accurate prognostication.

We hypothesized that:

• There is variability in sleep regularity and patterns among individuals with Major

Depressive Disorder (MDD).

• There is a strong correlation between subjective self-reported sleep ratings and

objective accelerometer-based measurements.

• Objective sleep measurement could detect differences among individuals with MDD.

We developed an algorithm to calculate objective sleep based on accelerometer data.

We calculated sleep regularity indices (SRI) for both objective and subjective sleep using

the following formula:

𝑆𝑅𝐼 =
1 +

1

𝑇 − 𝜏

∫︀ 𝑇𝜏

0
𝑠(𝑡)𝑠(𝑡 + 𝜏)𝑑𝑡

2
(2.3)
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Figure 2-6: Mean absolute error of predicting HDRS using different models under the
user-split and time-split scenarios [186]. In the time-split setting, the lowest mean absolute
error (MAE) was obtained by the model that included only features from the phone
[𝐹 (2, 12) = 19.04, 𝑝 < 0.002]. In the user-split scenario, all modalities performed about
the same [𝐹 (2, 12) = 0.55, 𝑝 < 0.59] with the lowest MAE obtained by the model using
only the features from the wearable sensor. The best models in each deployment setting
provided more accurate estimates than group median and individual screen baselines but
not better than the individual median baseline in the time-split scenario. However, these
differences were not significant.

Totally, the accelerometer-based (objective) and self-reported (subjective) sleep/awake

time periods matched 60.94% of the time. Specifically for MDD patients, the algorithm

overestimated accelerometer-based sleep epochs that were reported as awake.
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Table 2.6: Objective vs. subjective sleep and awake epochs for HCs

HC Total Accuracy:
63.38%

Objective
Awake Sleep

Subjective
Awake 49.28 18.86
Sleep 17.76 14.10

Table 2.7: Objective vs. subjective sleep and awake epochs for MDD patients

MDD Total Accuracy:
59.32%

Objective
Awake Sleep

Subjective
Awake 44.49 24.63
Sleep 16.05 14.84

Based on t-statistics, MDD patients had a lower objective (t=3.09, p=0.012) and

subjective SRI (t=3.37, p=0.005) compared to HCs. A trend toward positive Pearson

correlation between objective and subjective SRI did not reach statistical significance in

this small sample (r=0.37, p=0.17).

In summary, there are discrepancies between Individuals’ subjective sleep ratings and

objective data from the E4 sensors. Irregular sleep is associated with depression.

2.7.2 Association between Location Patterns from Commodity Phone

Sensors and Depression Severity

Smartphone technology is ubiquitous and can assist doctors by monitoring patients’ symp-

toms and behavioral patterns. However, the extent to which the course of depression can

be predicted with cell phone data remains unknown.

We hypothesized that location patterns from phone sensors are correlated with clinical

depressive symptoms.

We calculated total standard deviation (SD) of location data, (𝑆𝐷𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒+𝑆𝐷𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒)/2,

in the week prior to the assessment. To remove the effect of the time spent at home around

nighttime and while sleeping, we constrained the hours to between 9AM and 6PM to

estimate the location changes only throughout the day. We used the full 24 hour for the
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(a) A sample HC.

(b) A sample MDD patient.

Figure 2-7: Objective sleep from two sample patients. Black: sleep, white: awake, grey:
missing.

weekend location SD to better represent user behavior when not obliged to show up at

work.

The variable Transition Time represents the percentage of each day during which a

participant was in a non-stationary state (moving faster than 0.3 m/s). We calculated the
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Figure 2-8: Objective vs. subjective sleep regularity index.

median of the Transition Time for each week prior to the HDRS assessment.

To asses the relationship between the HDRS total location variability in the week

prior to clinical assessment while accounting for individual differences, we used linear

mixed-effect (LME) models. We developed two models:

• M1: LME with random intercept

• M2: LME with random intercept and slope

We selected the model with a better balance between complexity and good fit based on

Bayesian Information Criterion (BIC). For weekday: BICM1=454.6, BICM2=463.1, for

weekend: BICM1=454.6, BICM2=462.5.

There was a statistically significant negative relationship between the total SD of

location within day hours the week prior to the assessment (p=0.031) and HDRS total

scores (M1 model).

Also, there was a statistically significant negative relationship between the total SD of

location over the weekend prior to the assessment (p=0.036) and HDRS total scores (M1

model).

The variable Home Stay represents the percentage of time a participant spent at

approximated home location (median location between 12am-6am), relative to other
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location clusters. We calculated the median of the Home Stay for each week prior to the

HDRS assessment dates.

We used the linear mixed-effects model with random intercepts and slopes to assess

relationship between the HDRS and a) the Transition Time (Model 1) b) Home Stay

(Model 2) using the following model:

𝐻𝐷𝑅𝑆𝑖 = 𝛽0𝑖 + 𝛽1𝑖 * 𝐿𝑂𝐶𝑖 + 𝜖𝑖

Where: 𝐻𝐷𝑅𝑆𝑖 is the HDRS value for i-th person; 𝐿𝑂𝐶𝑖 is the location metric

(Transition Time for Model 1 and Home Stay for Model 2) for i-th person); 𝛽0𝑖 is the

i-th person intercept 𝛽0𝑖 = 𝛽0 + 𝜇0𝑖, 𝜇0𝑖 ∼ 𝑁(0, 𝜎02); 𝛽1𝑖 is the i-th person slope, 𝛽1𝑖 =

𝛽1 + 𝜇1𝑖, 𝜇1𝑖 ∼ 𝑁(0, 𝜎12); 𝜖𝑖 is the i-th person error, and 𝜖𝑖 ∼ 𝑁(0, 𝜎2).

There was a negative relationship trending towards significance between the median of

the Transition Time metric calculated over the week prior to the assessment (p=.057) and

HDRS total scores (M1 model).

There was a statistically significant positive relationship between the median of the

Home Stay metric calculated over the week prior to the assessment (sample includes only

MDD, p=.0393) and HDRS total scores. For all the participants p=.098. (M2 model).

In summary, location variability during day hours is negatively associated with HDRS

score in the week prior to the assessment. The same trend is observed for location variations

over the weekend prior to the assessment. Depression severity (measured with HDRS) is

positively associated (p=.0393) with the % of time spent in home, and time in transition

decreases with depression severity (p=.057)

2.7.3 Association Between Cell Phone Social Interactions and De-

pression Severity

Cell phone technology can assist doctors by monitoring patients’ symptoms, and may

eventually be useful in the prediction of depressive episode time courses. However, the

extent to which the course of depression can be predicted with cell phone data remains
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unknown. The quantitative measurement of communication patterns (i.e., number of text

messages and phone calls) between depressed patients and their contacts may be useful for

the prognostication of the course of depression. We hypothesized that more communication

with social contacts via texts and phone calls would correlate with lower depression scores.

There was a statistically significant negative relationship between the average number

of outgoing calls (p=.014) and HDRS total scores (M1 model).

To assess the relationship between the HDRS total score and the number of calls/texts

in the week prior to clinical assessment while accounting for individual differences, we

used linear mixed-effect (LME) models. We developed two models:

• M1: LME with random intercept

• M2: LME with random intercept and slope

We selected the model with a better balance between complexity and good fit based on

Bayesian Information Criterion (BIC).

Furthermore, there was a statistically significant negative relationship between the

average duration of outgoing calls (p=.047) and HDRS total scores (M2 model).

No significant relationship was observed between other hypothesized parameters (the

number of incoming calls, texts, or the duration of the incoming calls in the week prior to

the assessment) and HDRS total scores.

In summary, our results showed a significant negative relationship between number

and duration of outgoing calls and subjective reporting of depression severity. Participants

who were feeling less depressed may have been more inclined to reach out socially.

Or, initiating more social interaction may have caused participants to feel less depressed.

Longer interactions may be more meaningful and supporting and thus alleviating depressive

symptoms.
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2.7.4 Association Between Mood and Alcohol Use in Major Depres-

sive Disorder

Heavy drinking often co-occurs with MDD, increasing disability and preventing the

amelioration of symptoms. New tools such as ecological momentary assessment (EMA)

and wearable sensors allow a more granular examination of the association between MDD

and alcohol use. In this section, our objective is to examine the association between

depressive symptoms and alcohol consumption and moderators of the association through

active and passive data recording.

Surveys included 10 questions from the Positive and Negative Affect Scale (PANAS)

and questions about number and type of drinks consumed daily.

Our dependent variables include:

• Low Mood: log total NA/PA;

• EDA asymmetry: difference in skin conductance level between right and left wrists

over the course of the day;

• Home stay: percentage of time spent at home over the course of 24 hours;

• Alcohol use: daily number of drinks (SD).

We hypothesized that:

• Low mood and alcohol consumption are positively associated.

• Time spent at home moderates the association between mood and alcohol use.

• EDA asymmetry moderates the association between mood and alcohol use.

We used Linear Mixed Effects models with random intercept and slope to model the

association between mood and alcohol consumption. Results showed a positive relationship

between low mood and alcohol use (p=0.003).
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A Linear Mixed Effects model with random intercept showed that the interaction

between alcohol consumption and time at home was not significant (p=0.46). However,

the percentage of time spent at home was directly associated with low mood (p=0.05).

A Linear Mixed Effects model with random intercept and slope showed a significant

interaction between alcohol consumption and EDA asymmetry (p<0.0001): the greater

EDA asymmetry, the stronger the influence of alcohol consumption on mood.

Findings are consistent with previous studies showing an association between mood

and alcohol use. As expected, time spent at home and mood were associated. However,

alcohol use did not affect this relationship. Higher arousal was associated with stronger

association between alcohol consumption and mood. Integrating different technologies to

assess alcohol use and mood is feasible. Daily passive and active recording will facilitate

the development of complex models explaining the association of mood and alcohol use

and moderating and mediating factors.

2.8 Conclusion

In this chapter, we showed the feasibility of continuously measuring depressive symptoms

using a new method that requires only passive data. This data is captured from built-in

sensors of a regular android phone and E4 wristbands, including measures of EDA, sleep

patterns, motion, communication, location changes, and phone usage patterns. Using a

novel combination of machine learning techniques and a day of data from wearable and

phone sensor data, we could predict the Hamilton Depression Rating Scale (HDRS) values

on a hold-out set, obtaining a low error rate of 4.5 RMSE. Moreover, a post hoc statistical

analysis showed that poor mental health was associated with more irregular sleep and fewer

incoming messages. Less motion measured by average motion, the standard deviation

of motion, and the fraction of time in motion were associated with poor mental health.

Additionally, less variability in location patterns measured by the standard deviation of

location pattern changes between 9 am - 6 pm was associated with poor mental health.
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Worse mental health was also associated with a higher asymmetry of EDA between the

right and left wrists measured by the difference in skin conductance response peaks and

mean EDA difference (right minus left).

In the future, we would like to explore the feasibility of our methods for other scenarios,

for example having hold-out test subjects resembling when some patients have no observed

data in the training phase. We know that there is some interdependency among patients.

The variety of our prediction models and the ensemble methods can learn to account

for individual differences. We would like to explicitly model that by comparing against

mixed-effect models and modeling the patients’ variations from their baseline. In this

work, we included several post hoc analyses to discover more informative data streams.

We would like to explore the discriminative power of those features further.

2.9 Statement of Contributions

This chapter, especially capturing the rich dataset, comes from a collaboration between

Roz Picard’s Affective Computing group and Depression and Clinical Research Program

(DCRP) at Massachusetts General Hospital. My contributions include checking data

quality and recruitment, resolving technology problems, cleaning data, feature extraction,

and all the modeling and analyses provided in this chapter.

Szymon Fedor has made significant contributions to get this work off the ground. He

wrote the original grant proposal that funded this work and contributed to several following

grant proposals. He managed many aspects of the project, including coordinating with the

medical team, preparing hardware, advising the project, and processing the physiological

features. He has done several other analyses on this dataset that though not included in

this thesis, have informed my thinking.

I started developing the predictive models when I took David Sontag’s class on Machine

Learning for Health Care. David has provided insightful advice throughout the course and

afterward. Roz has provided advice and guidance throughout the project.
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grant proposal writing: Dr. David Mischoulon, Dr. Paola Pedrelli, Dr. Dawn Ionescu, Dr.

Jonathan Alpert, Dr. Joshua Curtiss, Michael Pittman, Ashley K. Meyer, Bridget Wallace,

Esther Howe, Lisa Sangermano, Chelsea Dale, John Lin.

MEng and undergraduate students have helped us along the way by building a visu-

alization platform that made investigating this data more accessible, helping with data

gathering, and several analyses that are not included in this thesis but have been impactful

in addressing several questions in this space: Darian Bhathena, Noah Faro, Olivia Valle,

Sarbari Sarkar, Marek Subernat.
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Chapter 3

Approximating Interactive Human

Evaluation in Open-Domain Dialog

Building an open-domain fully automated conversational agent is a challenging problem.

Current evaluation methods, mostly post hoc judgments of static conversation, do not

capture human notions of conversation quality. In this chapter, I describe the work I

conducted with a team of collaborators (see section 3.9 for individual contributions).

We investigate interactive human evaluation and provide evidence for its necessity; we

then introduce a novel, model-agnostic, and dataset-agnostic method to approximate

it. In particular, we propose a set of psychologically motivated proxies that capture

sentiment, semantic coherence, and user engagement on the conversation trajectory. Then,

we employ a self-play scenario where the dialog system talks to itself and we calculate

the combination of the aforementioned proxies. While previous automated metrics at

best only poorly correlate with human judgments of quality (r=.44) [149], we show that

this newly developed hybrid metric is capable of capturing the human-rated quality of

a dialog model better than any automated metric known to-date, achieving a significant

Pearson correlation (𝑟 > .7, 𝑝 < .05). To investigate the strengths of this novel metric and

interactive evaluation in comparison to state-of-the-art metrics and human evaluation of

static conversations, we perform extended experiments with a set of models, including
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several that make novel improvements to recent hierarchical dialog generation architectures

through sentiment and semantic knowledge distillation on the utterance level. Finally, we

open-source the interactive evaluation platform we built and the dataset we collected to

allow researchers to efficiently deploy and evaluate dialog models.

3.1 Introduction

The goal of an open-domain conversational agent is to carry out natural social interactions

with humans. Current state-of-the-art generative neural networks fail in producing key

aspects of good natural conversation, including staying on topic, not being repetitive, and

generating emotionally appropriate responses. One of the biggest challenges in training

better dialog systems relates to the difficulty of evaluating them. Automatic metrics

such as BLEU score relate poorly to human judgment of dialog quality [145], and while

embedding-distance based metrics provide an alternative [166], we will show that they

also do not correlate well with human evaluation. Without a reliable metric to optimize,

training high quality dialog models remains difficult.

Since humans are the ultimate authority on what constitutes a good conversation, many

authors rely on human ratings to evaluate their methods [183, 222, 223]. The predominant

procedure for obtaining human ratings uses static evaluation: a context of several sentences,

often originating from the dataset that dialog model was trained on, is used as input to

generate a response (either a single utterance or multiple consecutive utterances). This

particular generated response for this particular context is then provided for a human

to evaluate. However, such observational evaluation of a static text sample is limited

in capturing common failure modes of open-domain dialog systems, such as a lack of

diversity in the responses, inability to track long-term aspects of the conversation, and

inability to maintain a consistent persona [42]. Despite this, static evaluation is commonly

used for evaluating these exact qualities [137, 160].

Conversation is inherently a process. In this work, we argue that multi-turn interactive
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Table 3.1: Static evaluation fails to capture a lack of diversity in a dialog model’s responses,
as well as its inability to track the conversation and respond in emotionally appropriate
ways. We argue interactive evaluation is needed to evaluate dialog models, and show that
our novel Emotion+Infersent (EI) models trained on a larger and more diverse corpus,
produce better interactive dialog. We present strong evidence that our novel dialog self-
play framework combined with psychologically motivated novel automated metrics can
accurately estimate quality of a model with respect to its ability to carry out multi-turn
open-domain conversations. Here, examples from one model category are included:
Hierarchical Recurrent Encoder Decoder (HRED) [222]. Similar observations for other
model categories are included in the appendix. * refers to novel elements of our work,
including a new evaluation framework, new model, and dataset.

Evaluation Strategy
Model
Dataset

Static
HRED
Cornell

Interactive
HRED
Cornell

Interactive
EI* HRED
Reddit*

Self-play*
EI* HRED
Reddit*

[Context]: you’re weird.
[HRED]: i’m sorry.

[User]: i’m feeling sad today.
[HRED]: no.
[User]: yes i am!
[HRED]: i’m sorry, i’m sorry.
i don’t want to know.
[User]: you’re weird.
[HRED]: i’m sorry.

[User] talk to me
[EI HRED]: it’s my job.
[User]: i love you
[EI HRED]: thank you for the
kind words.
[User]: do you love me?
[EI HRED]: it’s a bit personal,
so I sent you a dm.
[User]: i’m blushing

[EI HRED] i can’t wait to see
what i can do.
[EI HRED] that’s a good idea.
[EI HRED] how do you deal
with people?
[EI HRED] i’ve been on reddit
for a long time.
[EI HRED] i am in the same boat.

human evaluation is essential for evaluating this process, and for making progress in

improving open-domain dialog models. A multi-turn interactive evaluation is open-ended,

and allows the users to derive and control the trajectory of the conversation by saying

whatever they want. As opposed to post hoc observations of a generated response to a static

context, successful interactive dialog generation is an ultimate test of generalization. Table

3.1 illustrates an example where a bot generates a coherent static response, but interactive

evaluation shows that the distribution of its responses has collapsed onto repeatedly saying

the same phrase, a common problem in open domain dialog [139].

The relative sparsity of interactive human evaluation of dialog systems is partly due

to the difficulty and expense of collecting human data. Therefore, we develop a way to

approximate human judgment of interactive dialog quality using a novel form of dialog

self-play. We begin by moving beyond superficial word-level mapping by proposing a

series of human-centered metrics to evaluate the quality of conversation motivated by

findings in psychology. Specifically, inspired by the effectiveness of sense of humor

in creating solidarity [95], style matching for forming relationship stability and social
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cohesiveness [79, 110], and the importance of active listening through forming follow up

questions [108], we propose metrics to capture sentiment, semantics, and user engagement

for conveying empathy and understanding. We then fit a function that predicts human

assessments of conversation quality given these metrics. This function is used to predict bot

quality through self-play: for a fixed number of turns, the bot generates utterances which

are fed back into itself as input in the next turn. The same metrics described above are

computed on the self-play generated conversation, and the same function fit to human data

is used to predict the bot quality. We show a very high Pearson correlation (𝑟 > .7, 𝑝 < .05)

between the predicted quality scores and the ground-truth human judgments of bot quality,

suggesting self-play is a good proxy for interactive conversation assessment.

To demonstrate the relevance of the interactive evaluation and the proposed self-play

evaluation, we perform extended experiments with different hierarchical architectures. In

particular, we compare three recent hierarchical baselines: HRED [222], VHRED [223],

VHCR [183]. Motivated by sentiment and semantics being key aspects of producing high

quality conversations, we regularize the top level of the hierarchy to ensure it encodes

such information, using model distillation [103]. Our results show the effectiveness of the

proposed regularization in interactive evaluation in both the human-bot and the self-play

scenarios.

This work makes three main contributions: 1) demonstrates the benefits of multi-turn

interactive evaluation to capture the quality of the dialog systems; 2) presents a novel

self-play framework to estimate a new psychology-motivated hybrid quality score. These

estimations are highly correlated with quality scores obtained from interactive human

evaluation, more strongly than the state-of-the-art automated metrics; 3) proposes a new

method of regularizing hierarchical seq2seq models with knowledge distillation. All

the code, data, and interactive evaluation platform resulting from our work are publicly

available.

86



3.2 Related Work

Interactive evaluation in dialog has been mostly limited to presenting the results of com-

petitions (e.g. the Alexa prize [221, 246], or the Conversational Intelligence Challenge

[42]). Those findings reveal that most bots do not perform well in interactive evaluation,

due to repetitiveness, inability to balance dialog acts across the conversation, and inability

to maintain a consistent persona [42]. Even work aimed at maintaining a persona does

not test in an interactive setting [137, 160]. To the best of our knowledge, no prior work

has compared multi-turn, interactive human evaluations of open-domain dialog models to

traditional forms of evaluation.

Dialog systems remain difficult to train due to the lack of metrics that can effectively

capture good dialog quality. Several authors have proposed training automatic predictors

of human judgment or to combine human judgment with automatic metrics [93, 94, 149].

Before our work, the best model trained to predict human judgments achieved a Pearson

correlation of .44 with the ground truth [149].

The lack of research into interactive evaluation relates to the difficulty and cost of

collecting human ratings. We show that human judgments of the quality of an interactive

evaluation can be automatically and reliably approximated using dialog model self-play.

There is limited work investigating self-play for dialog systems: [225] use a task schema

and user simulator to generate samples for input to a goal-directed dialog system, while

[139] use a copy of a dialog model to compute a reward function that can be optimized

with reinforcement learning. However, we are not aware of prior work using self-play for

approximating interactive human evaluation.

Interactive conversation necessitates tracking long-term aspects of the dialog like the

topic and tone. Hierarchical recurrent neural networks (RNNs) have been proposed as a

way to improve long-term tracking of the conversation, through maintaining both a word-

and utterance-level RNN [183, 222, 223, 226, 265]. Yet dialog is more than language

modeling, it requires topic and social coherence. Prior performance improvements to
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dialog models using topic information include appending topic as an additional input [77],

or extracting topic information using Latent Dirichlet Allocation [138, 258]. Towards

social and emotional coherence, previous works have investigated various features and loss

functions based on emotion [107, 197, 198, 266, 267]. Given research highlighting the

ineffectiveness of LDA for short texts [259], such as those involved in casual conversation,

and the unavailability of topic and tone supervision at-scale, approaches overcoming these

limitations are preferred. To the best of our knowledge, transferring sentiment and semantic

information from a pre-trained model directly into a dialog model using knowledge

distillation [103] has not been studied. Thus, we select a set of recent hierarchical dialog

models and their improved versions through knowledge distillation for a thorough multi-

turn interactive evaluation and comparison to traditional evaluation.

3.3 Knowledge Distillation for Sentiment and Semantic

Regularization

To systematically compare multi-turn interactive evaluation of open-domain dialog with

traditional forms of evaluation, we include a diverse set of models. Particularly, we build

on three existing hierarchical seq2seq architectures designed for dialog. Here, we provide

a brief summary; for detailed information, see [183, 222, 223]. The first baseline model,

Hierarchical Recurrent Encoder Decoder (HRED) [222] extends a traditional seq2seq

model by adding a third recurrent neural network (RNN), which is only updated after each

dialog turn, or utterance. The idea behind this Context RNN is that it could potentially

track longer term aspects of the conversation, such as the topic; however, there is no

guarantee that it will learn to do so. The decoder of the HRED model conditions on both

the embedding produced by the encoder for the current utterance, ℎ𝑒
𝑛, and the embedding

of the Context RNN for the previous utterance, ℎ𝑐
𝑛−1.

The second baseline model, Variational HRED (VHRED) [223], extends HRED with a
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variational constraint on the utterance embedding space 𝑧. Let 𝑥𝑛 = [𝑤1𝑛, 𝑤2𝑛 . . . 𝑤𝑚𝑛] be

the 𝑛-th utterance composed of tokens 𝑤1..𝑚. VHRED predicts 𝑥𝑛 as follows:

ℎ𝑒
𝑛 = 𝑓 𝑒(𝑥𝑛−1) (3.1)

ℎ𝑐
𝑛−1 = 𝑓 𝑐(𝑥𝑛−1, ℎ

𝑒
𝑛−1) (3.2)

𝜇,Σ = 𝑓(ℎ𝑐
𝑛−1) (3.3)

𝑝𝜃(𝑧𝑛|𝑥<𝑛) = 𝑁(𝑧|𝜇,Σ) (3.4)

𝑝(𝑥𝑛|𝑥<𝑛) = 𝑓𝑑(ℎ𝑐
𝑛−1, 𝑧𝑛) (3.5)

Equations (5.1)-(5.5) describe the computation of VHRED at inference time where 𝑓 𝑒,

𝑓 𝑐, and 𝑓𝑑 are Gated Recurrent Unit (GRU) networks for the encoder, context, and decoder

RNNs, respectively; at training time, it allows the computation of 𝑧, 𝜇, and Σ to condition

on the encoding of the target utterance, ℎ𝑒
𝑛, giving the posterior distribution 𝑝Ψ(𝑧𝑛|𝑥≤𝑛).

A Kullback-Leibler (KL) divergence constraint is placed between the posterior and prior,

𝐷𝐾𝐿(𝑝Ψ||𝑝𝜃).

The third model, Variational Hierarchical Conversation RNN (VHCR)[183] further

extends VHRED by drawing a prior encoding 𝑧𝑐𝑜𝑛𝑣 ∼ 𝑁(0, 𝐼) for each conversation,

allowing all parts of the model (𝑓 𝑐, 𝜇,Σ) to condition on 𝑧𝑐𝑜𝑛𝑣, which is unchanging

throughout the conversation.

3.3.1 Emotion and Infersent Regularization (EI)

While the hierarchical design of these models is motivated by a desire to allow tracking

high-level, slow-changing aspects of the conversation like topic or tone, it is unclear that

the network will be able to model these aspects without additional structure or information.

We thus propose a regularization to the top level of the hierarchy, the Context RNN, to force

it to encode both the sentiment and semantics of the utterance. To do this, we leverage a

state-of-the-art sentiment detection model trained on a large Twitter corpus [52], as well as
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Figure 3-1: Illustration of the EI regularization (blue-solid) applied to VHRED baseline
(red-checkered) to enforce encoding sentiment and semantics of an utterance in the Context
RNN.
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Figure 3-2: Illustration of EI regularization (blue-solid) applied to HRED baseline (red-
checkered) to enforce encoding sentiment and semantics of an utterance in the Context
RNN. The EI regularization can be similarly applied to VHCR.

the recently proposed Infersent sentence-embedding model trained to predict the meaning

(i.e. entailment, contradiction) of sentences [29], and distill them into the Context RNN.

First, we use these models to predict the emotional content, 𝑓𝐸(𝑥𝑛), and infersent

embedding, 𝑓𝐼(𝑥𝑛) of each input utterance. We then add an additional network to the

hierarchical models which predicts these values based on the context RNN embedding

of the utterance: 𝑓𝑑𝑖𝑠𝑡𝑖𝑙𝑙(ℎ𝑐
𝑛) = < 𝑓𝐸(𝑥𝑛), 𝑓𝐼(𝑥𝑛) >. The goal is to transfer knowledge of

emotion and semantics in text into the context RNN via knowledge distillation [103].

Figures 3-1 and 3-2 illustrate, in blue color, the EI regularization applied to the
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VHRED model and HRED models respectively. The regularization can be similarly

applied to VHCR. In our experiments we refer to the regularized models as HRED-EI,

VHRED-EI, and VHCR-EI, respectively, or, more generally, EI models as opposed to

baseline models. The code for all our models is available at https://github.com/

natashamjaques/neural_chat and was originally based on [183]. For details

regarding hyper-parameter tuning refer to §3.7.12.

3.4 Interactive Evaluation Methodologies

3.4.1 Traditional Evaluation

Automatic metrics Embedding-based metrics compare generated sentences to ground

truth sentences using a vector representation of words [166]. In this work, we use three

embedding metrics: embedding average, vector extrema, and greedy matching. These

three metrics are used in previous open-domain dialog models [145, 183, 223]. We also use

perplexity as a standard measure of the likelihood of the generated sentences with respect

to the target outputs. Another common metric for variational models is the KL-Divergence

between the posterior and the prior distribution, as a way of assessing the information

encoded into the latent variables [226] (Figure 3-1 illustrates KL for the VHRED model).

As I show in this chapter, most of these metrics ignore the trajectory of the conversation

and are blind to human-centric qualities that make a conversation high-quality, such as

sentiment, semantics, and user engagement. More information regarding embedding

metrics can be found in §3.7.7.

Conventional static human evaluation We employ a similar method to previous work

for our static human evaluation of generated responses [183, 223], sampling contexts from

each corpus and asking humans to compare the generated responses. To reduce ambiguity,

we exclude contexts shorter than 10 tokens and contexts containing <unknown> tokens.

We recruited participants from Amazon Mechanical Turk (AMT) to compare generated

91

https://github.com/natashamjaques/neural_chat
https://github.com/natashamjaques/neural_chat


sentences. Annotators could also select a third “tied” option. For each example (context

and pair of generated sentences), we asked annotators to compare generated sentences

based on quality, fluency, diversity, contingency, and empathy. Each batch of 100 pairwise

comparisons were labeled by 6 - 8 annotators.

3.4.2 Interactive Human Evaluation

To address the limitations of static human evaluation, we built a platform for conducting

interactive evaluation of dialog models with humans, which we make available in open-

source to the community (see Figure 3-5). Annotators rated quality, fluency, diversity,

relatedness, and empathy of a bot after interacting with it for at least 3 turns. Participants

can also upvote or downvote each bot response. For more information about this platform,

see §3.7.10. Our goal is to make this work transparent and reproducible, while adding

diversity to the platforms future practitioners can choose to use (e.g. ParlAI [165], Plato

Research Dialog System [181], ChatEval [217]).

Figure 3-3: Consent form in the Interactive Evaluation Platform (available at https://neural.chat).
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Figure 3-4: Interactive Evaluation Platform (available at https://neural.chat): Side-by-side view
of chat history (left) and the first part of the evaluation form (right).

Figure 3-5: Interactive Evaluation Platform (available at https://neural.chat): The second part
of the evaluation form showing the remaining questions.
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3.4.3 Novel Metrics and Self-play

Inspired by real-world human interactions, we introduce novel metrics to capture the

morphology of a conversation, i.e., how the users’ responses progress over time and how

the bot’s responses interact with them. We propose a hybrid combination of these metrics,

𝑀𝐻 , that is optimized to predict conversation quality on human data. We then apply 𝑀𝐻

to self-play, i.e., the trajectory of bot-generated responses, and investigate how it relates to

human ratings of conversation quality.

Sentiment metrics To approximate emotional tone of an utterance, we use a state-of-

the-art sentiment detector trained on a large Twitter corpus [52]. This pre-trained model

outputs an emotion embedding – a probability distribution over 64 most-frequently used

emojis. To estimate the Sentiment Coherence between user’s query and generated samples,

we calculate the cosine similarity between their emotion embeddings. We define a set of

weights over the 64 emojis and calculate the weighted sum over an emotion embedding

vector to derive a Sentiment score which is higher for positive sentiment and lower for

negative sentiment (See §3.7.11). We define Sentiment Transition as the change between

user’s Sentiment before and after a bot response. Additionally, Sentiment Min-Max is

defined by the slope of change between min and max Sentiment in user utterances over the

course of a conversation. Since humor can be used to create solidarity [95], we count the

number of “ha"s in the user response as a proxy for Laughter. The combination of these

metrics provides a snapshot of the trajectory of sentiment in a conversation and quantifies

if the bot is able to elicit positive emotions in the user.

Semantic metrics Language style matching is a strong predictor of relationship sta-

bility [110] and social cohesiveness [79]; thus, we introduce metrics to capture lexical

similarity. We use Infersent, a state-of-the-art sentence-embedding model to encode the

user and bot responses into a 4096-dimensional embedding space [29]. Infersent was

trained to distinguish if two sentences are supporting, contradicting, or have a neutral

relationship. We estimate Semantic Similarity by calculating the cosine similarity between

94



the infersent embedding of the user’s query and the generated bot sample. Additionally, we

use the classic Word2Vec embeddings trained on Google News Corpus along with average,

extrema, and greedy aggregation methods similar to Section 3.4.1 to derive Average Word

Coherence, Extrema Word Coherence, and Greedy Word Coherence between user and bot

responses.

Engagement metrics Asking questions is an important active listening skill which is

linked to conversation management, attentiveness, and responsiveness [11, 108]. Therefore,

we define Question Score to quantify if the bot is using question words and/or a question

mark. We also introduce # Words as a proxy for user engagement that counts the number

of words in their response.

Hybrid metric (𝑀𝐻) We combine the aforementioned metrics (𝑀𝑖) using linear re-

gression, and optimize their coefficients (𝜆𝑖) to best predict human judgment of interactive

conversation quality: 𝑀𝐻 =
∑︀

𝜆𝑖 *𝑀𝑖 + 𝜆0. We use a leave-one-bot-out scenario where

we isolate all the human conversations with one of the dialog models, 𝜒𝑗 , as the hold-out

test set. We train the 𝜆𝑖,𝑗 on the remaining quality ratings. We found that the learned 𝜆𝑖s

were stable across the training folds, only exhibiting small variations. Other researchers

are encouraged to use our learned coefficients directly or adjust them according to their

own interactive human evaluation dataset. See §3.7.2 for more details about the learned

𝜆𝑖s.

Self-play as an approximation for interactive evaluation Since interactive human

evaluation is costly, we propose a self-play scenario where the dialog system talks to

itself, i.e. the bot generated responses are fed back into it as the next turn input. For

each model 𝜒𝑗 , we generate 100 random conversations, fixed at 10 turns. The self-play

trajectories created using model 𝜒𝑗 are treated as the hold-out set. Therefore, the trained

𝜆𝑖,𝑗 values based on all conversations except for the ones with 𝜒𝑗 are used to calculate 𝑀𝐻

on each generated bot-bot conversation trajectory for 𝜒𝑗 . The estimated 𝑀𝐻 values are

averaged across conversation samples for 𝜒𝑗 . This value is used for comparison against

the ground-truth interactive quality ratings aggregated on the bot-level.
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3.5 Experiments

3.5.1 Datasets

A common source of data for open-domain dialog systems is movie scripts, among which

the CORNELL dataset [32] is the largest and most commonly used. Therefore, we use it to

benchmark against previous state-of-the-art results [183]. Its median conversation length

is 3 utterances and the conversations are strictly between pairs of speakers. Recognizing

that movie lines have limited conversation diversity, we also built a new corpus, REDDIT.

Between the many different subreddits available, the conversations vastly differ on topic,

language style, and participation patterns. We select the Casual Conversations forum

(r/CasualConversations), a community of 607𝐾 conversationalists discussing a

variety of topics. We collect a dataset of 109𝐾 conversations of at least 3 turns with

the median conversation containing 7 utterances from conversational exchanges on the

platform in 20181. More more details about this dataset refer to §3.7.6.

3.5.2 Interactive Human Evaluation

Table 3.1 (in §3.1) illustrates how EI regularization produces a higher quality conversation

when compared to baseline. Rather than cherry-picking results, we make all of the

bots evaluated in the study available at https://neural.chat/BRFZACDCOA/ for

readers to assess interactively.

Table 3.2 summarizes human ratings of baseline and EI models obtained via interactive

evaluation. In total, 565 ratings were captured. We used a 7-point Likert scale to capture

1This REDDIT dataset is available at https://affect.media.mit.edu/neural_chat/
datasets.
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Table 3.2: Mean human ratings for Baseline and EI (Emotion+Infersent) models for HRED, VHRED, and
VHCR architectures with 90% confidence intervals. See §3.5.2 for 3-factor ANOVA results.

Cornell Reddit
Model Metric Baseline EI Baseline EI

HRED

quality 2.182 ± 0.305 2.347 ± 0.313 2.527 ± 0.310 2.714 ± 0.299
fluency 3.909 ± 0.387 4.000 ± 0.381 4.436 ± 0.349 4.786 ± 0.316
diversity 2.836 ± 0.374 2.735 ± 0.380 3.418 ± 0.386 3.554 ± 0.372
contingency 2.200 ± 0.291 2.469 ± 0.336 2.382 ± 0.288 2.536 ± 0.322
empathy 2.673 ± 0.352 2.490 ± 0.350 3.018 ± 0.329 3.107 ± 0.337

VHRED

quality 2.022 ± 0.309 2.333 ± 0.252 2.694 ± 0.392 2.864 ± 0.341
fluency 3.109 ± 0.351 3.949 ± 0.396 4.250 ± 0.496 4.477 ± 0.402
diversity 3.565 ± 0.442 4.385 ± 0.371 5.00 ± 0.468 4.705 ± 0.353
contingency 2.261 ± 0.287 2.487 ± 0.346 2.472 ± 0.362 2.773 ± 0.370
empathy 2.739 ± 0.374 2.564 ± 0.367 3.000 ± 0.393 3.341 ± 0.385

VHCR

quality 2.132 ± 0.247 2.548 ± 0.380 2.615 ± 0.350 2.692 ± 0.298
fluency 2.679 ± 0.306 3.976 ± 0.380 3.923 ± 0.433 4.308 ± 0.395
diversity 3.755 ± 0.340 4.238 ± 0.421 4.436 ± 0.455 4.231 ± 0.382
contingency 2.189 ± 0.270 2.571 ± 0.356 2.077 ± 0.298 2.692 ± 0.354
empathy 2.340 ± 0.316 2.714 ± 0.368 2.974 ± 0.434 3.288 ± 0.379

quality2, diversity 3, fluency 4, consistency 5, and empathy 6 of the chatbot, where one

represented the worst and seven represented the best rating. See Figures ?? and 3-5 for

the interface of user evaluation. Each dialog model has been evaluated by a number of

annotators, ranging from 36 to 56. For additional information about human annotators refer

to §3.7.9. We ran a 3-factor ANOVA on the sum of user scores, where the independent

variables are model architecture (HRED, VHRED, VHCR), EI regularization (Baseline, EI),

and dataset (CORNELL, REDDIT). We found a significant main effect of EI regularization

and dataset, but no significant difference between the three types of hierarchical models. We

found that adding emotion and infersent (EI) regularization to baseline models improved the

interactive chat experience significantly, 𝐹 (554, 1) = 9.016, 𝑝 = .003. Further, the models

trained on the REDDIT dataset performed significantly better, 𝐹 (554, 1) = 30.796, 𝑝 <

.001. This finding validates the hypothesis that distilling information about topic and

2Overall, how was the quality of the chat?
3How diverse (non-repetitive) were the chatbot’s responses?
4How fluent was the chatbot? (i.e. did it use correct grammar and sentence structure)?
5How related to and consistent on prior messages were the chatbot’s responses? (i.e. were the chatbot’s

responses related to what you said?)
6How empathetic was the chatbot? (i.e. did it respond in a supportive and emotionally appropriate way)?

97



Table 3.3: Results of automatic traditional metrics for 1-turn responses of models per context of baseline
and EI (Emotion + Infersent) models. PPL: perplexity, KL: KL divergence, Avg: Average, Ext: Extrema,
Grd: Greedy

Cornell Reddit
Model Version PPL KL Avg Ext Grd PPL KL Avg Ext Grd

HRED baseline 52.311 - .471 .329 .331 41.730 - .649 .394 .474
EI 47.636 - .560 .383 .400 41.245 - .651 .398 .482

VHRED baseline 49.414 .264 .539 .352 .395 36.240 .188 .635 .383 .464
EI 50.526 .517 .545 .355 .394 35.510 .167 .636 .392 .465

VHCR baseline 61.000 .562 .532 .345 .382 36.736 .267 .619 .371 .448
EI 49.243 .475 .588 .369 .444 37.198 .231 .639 .394 .469

tone into the top level of the hierarchy is useful for good conversation, and suggests that

the REDDIT dataset could provide more realistic training for open-domain dialog and be

valuable to the community. Additional ablation results are provided in §3.7.1.

3.5.3 Traditional Metrics

Automatic metrics Several prior works have focused on ensuring that the variational KL

term remains high in order to try to improve model quality (e.g. [183, 226]). However, we

observe there is no consistency between human quality rating and KL (Table 3.3). See

§3.7.8 for details about other human metrics, e.g. fluency, diversity, contingency, and

empathy. Thus, it is not evident that KL as classically formulated for dialog captures human

judgements of dialog quality. Even perplexity (a transformation of the cross-entropy loss

used to train our models) falls short of capturing human quality judgments, underscoring

the difficulty in effectively training good language models. We find embedding metrics

show more promise in preserving the order of human quality ratings, but still have only

weak correlation with human ratings. We present evidence for our novel hybrid metric

being a much stronger alternative.

Human static evaluation As shown in Table 3.4, while static human evaluation

suggests EI regularization is effective due to a higher number of win judgments7, the

results are noisy and difficult to interpret due to large confidence intervals and a high

7We follow [183] to highlight the higher value between wins/losses and reporting 90% confidence
intervals.
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Table 3.4: Results from human static evaluation for EI (Emotion+Infersent) vs. BL
(baseline) models as measured by pairwise comparisons of Quality with 90% confidence
intervals.

Cornell Reddit
Model Wins % Losses % Ties % Wins % Losses % Ties %
HRED-EI 40.8 ± 4.9 24.5 ± 4.9 34.8 ± 9.2 31.3 ± 5.2 29.5 ± 6.6 39.3 ± 10.7
VHRED-EI 36.9 ± 4.7 36.6 ± 5.6 26.6 ± 6.9 39.0 ± 7.0 34.0 ± 5.3 27.0 ± 8.9
VHCR-EI 33.0 ± 6.1 29.0 ± 5.4 38.0 ± 10.1 33.7 ± 7.9 27.3 ± 3.3 39.0 ± 8.6

percentage of ties. The median inter-annotator agreement measured pairwise through

Cohen’s 𝜅 [55] for our human evaluation was only 0.176 and 0.120 for CORNELL and

REDDIT respectively. This level of annotator agreement is lower than the median Cohen’s

𝜅 of previous work [145] and explains the larger confidence intervals. Even after removing

ambiguous examples (i.e. where equal number of annotators select each response as being

better), large annotation variation persists. This may be due to subjectivity and ambiguity

arising from different interpretations of <unknown> tokens or the short length of contexts

in the CORNELL corpus (e.g. median length of conversation of 3 utterances). These

findings further highlight the importance of an interactive evaluation as opposed to limited

static responses.

3.5.4 Novel Metrics Applied to Human Data and Self-play

We examine how the novel psychologically-inspired metrics relate to the trajectories of

the 100 best and 100 worst quality conversations. This is only feasible with interactive

evaluation. As shown in Figure 3-6, we observe that appropriate sentiment, coherent

semantics, and engaging users are indispensable to attaining high quality ratings in interac-

tive interaction. Comparing EI and baseline conditions, we see a replication of these trends

(Figure 3-7). For example, EI elicits longer responses from users (greater engagement),

with more laughter and higher semantic coherence.

Figure 3-8 summarizes the relationships between interactive human ratings and the
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automated metrics8. We observe that our sentiment metric applied to human data on its

own has higher correlation with interactive human ratings than the commonly used metrics

such as perplexity and embedding distance metrics. Most importantly, our novel hybrid

metric, 𝑀𝐻 , applied to self-play 9 aggregated on the model-level is strongly correlated

with all human ratings (𝑟 > .7), while previous metrics achieved 𝑟 < .5. This is a

significant finding, suggesting that even without running interactive human evaluation, we

can automatically approximate it through self-play. This metric is agnostic to the training

set and model type and can be calculated on the trajectory of self-play utterances for any

chatbot, regardless of its architecture. One interpretation is that the self-play framework

keeps the conversation within the training set distribution, and the model is less likely to

produce <unknown> tokens. Therefore, 𝑀𝐻 and its sub-components have meaningful

values and can be useful for quality approximation.

On a realistic conversation trajectory, 𝑀𝐻 is a hybrid of conflicting objectives and thus

is less susceptible to exploitation [34]. However, the purpose of the self-play metric (𝑀𝐻)

in its current form is a post hoc evaluation of a dialog model. There are precautions if one

intends to directly optimize for 𝑀𝐻 or its sub-components, for example in a reinforcement

learning scenario. The current formulation of self-play uses trajectories entirely generated

by the same model. If one intends to optimize 𝑀𝐻 , we suggest calculating it on conver-

sation trajectories between the bot and an external baseline model or a fixed copy [207],

or adopting adversarial learning by maintaining a discriminator to distinguish between

real/fake conversations [140]. This implicitly enforces generating realistic language. Addi-

tionally, we have shown how to successfully learn using sub-components of 𝑀𝐻 as reward

functions [112].

8For additional correlation results across the human metrics, between 𝑀𝑖s and human metrics on a
bot-level, and Spearman and Kendall rank coefficients, see §3.7.3, §3.7.4, and §3.7.5 respectively.

9Analyzing utterance overlap shows that these self-play conversations are distinct from the training
corpus and exhibit high diversity for variational models. Details can be found in §3.7.13.
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Figure 3-6: One hundred highest vs. lowest quality conversation trajectories; lines:
mean, shaded area: 90% confidence intervals, x-axis: conversation turns. (a) Timing of
upvote/downvote ratings: A bad first impression impedes overall rating. +1, -1, and 0 show
upvotes, downvotes, and no manual feedback, respectively. (b) Participants talk longer and
use more words in conversations rated higher. Number of words have been normalized
between 0 and 1. (c) High-quality conversations elicit more positive user sentiment; many
participants leave after expressing negative sentiment. Sentiment score ranges from -1
(the most negatively valenced emotion) to +1 (the most positively valenced emotion). (d)
High-quality conversations are more semantically similar as measured by average word
coherence between user query and bot responses. Users tend to leave the conversation
when the bot responses are semantically dissimilar. Coherence score can range from 0 (no
coherence) to 1 (maximum coherence).

3.6 Optimizing Human-centered Metrics in a Reinforce-

ment Learning Framework

A natural question that arises is how to optimize these human-centered metrics and

guard against Goodhart’s law [83]. Goodhart’s law suggests that "an observed statistical

regularity will tend to collapse once pressure is placed upon it for control purposes." A
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Figure 3-7: EI vs. baseline conversation trajectories; lines: mean, shaded area: 90% confidence intervals,
x-axis: conversation turns. (a) EI elicits longer responses from users, suggesting that they are more engaged
compared to the baseline models. (b) EI evokes more laughter from users compared to baseline. (c) EI has
higher semantic coherence as measured by average word coherence.

more generalized interpretation of that is "when a measure becomes a target, it ceases to

be a good measure." [235] Goodhart’s law phenomenon has been observed across various
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Figure 3-8: Pearson correlations between five human metrics and automated metrics. Sentiment -U has
higher correlation with interactive human ratings than prior metrics. Hybrid Metric MH -B/B, our novel
self-play based metric, has higher correlation across all human metrics more than any other metric proposed
to-date. Notes: -U: Calculated on user response, -B: Calculated on bot response, -U/B: Calculated between
user and bot response, -B/B: Calculated between consecutive bot utterances.

domains such as neural machine translation [203, 257], summarization [185, 234], robotics

[21], and beyond. For example, refining a translation model using reinforcement learning

with BLEU score reward function resulted in improvements in BLEU score but did not

reflect human evaluation [257]. While beam search significantly improves BLEU scores,

it tends to hurt the diversity of text and amplify its biases [203]. Over-optimizing for a

custom reward learned directly from human preferences ultimately becomes anti-correlated

with human preferences [234]. We hypothesized that varying the trade-off between the

incentive to get a higher reward against the incentive to remain close to an initial supervised

model 10 or better long-term credit assignment could help overcome this challenge. This

section briefly mentions our follow-up work in this space.

3.6.1 Follow Up I: Human-Centric Dialog Training via Offline Rein-

forcement Learning

How can we learn from human feedback to produce high-quality conversation without the

risk of humans teaching it harmful chat behaviors? We approach this problem by optimizing

the HC metrics we extensively studied in Section 3.4.3 using off-policy reinforcement

10Other researchers have also adopted this technique and reported its success [234].
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learning (RL). A well-known challenge in off-policy RL is the inability to explore and

over-optimistic estimation of future reward. The complexity of these problems increases as

the action space and the number of reward functions grow, such as in language generation.

We hypothesize that closeness to a strong pre-trained language model can generate natural

and fluent language, and optimization for HC rewards can further improve qualities that

matter to humans in an interactive dialog. Thus, we develop a novel class of offline RL

algorithms. These algorithms use KL-control to penalize divergence from a pre-trained

prior language model and use a new strategy to make the algorithm pessimistic, instead

of optimistic, in the face of uncertainty. We test the resulting dialog model with ratings

from 80 users in an open-domain setting and find it achieves significant improvements

over existing deep offline RL approaches. The novel offline RL method combined with our

proposed rewards can improve any existing generative dialog model using a static human

feedback dataset. For more information about this work, see [113].

3.6.2 Follow Up II: Hierarchical Reinforcement Learning for Open-

Domain Dialog

How to overcome the challenges of proper credit assignment for long-term conversational

rewards? In this follow-up work, we propose a novel approach to hierarchical reinforcement

learning (HRL), VHRL, which uses policy gradients to tune the utterance-level embedding

of a variational sequence model. This hierarchical approach provides greater flexibility

for learning long-term, conversational rewards than previous approaches that apply RL at

the word-level [112, 139, 140, 196, 262]. We build our rewards functions off our findings

from the hybrid HC metric discussed in Section 3.4.3 and other rewards associated with

improved human judgments of conversation quality [218]. We also add a novel HC reward

for minimizing the estimated toxicity of a conversation. This new reward aims to limit

inappropriate, biased, and offensive responses. We use self-play and RL to optimize

these HC rewards. We show that our approach provides significant improvements in both

104



human evaluation and automatic metrics over state-of-the-art dialog models, including

Transformers. For more information about this work, see [207].

3.7 Supplementary Materials

3.7.1 Ablation models results

We conducted additional evaluations of ablations of our EI models to determine whether

emotion or infersent regularization provided the most benefit. The results in Table 3.5

reveal that this depends on the dataset and the model in question. We also checked whether

simply appending the emotion and infersent embedding of an utterance to the top level of

the hierarchy could provide the same benefit as knowledge distillation, even though this

would require retaining copies of the DeepMoji and Infersent models, and would be more

computationally expensive at inference time. Table 3.5 reveals that the input-only models

do not out-perform the knowledge-distillation EI models on automatic metrics.

Table 3.5: Automatic metrics computed on ablations of the EI models, trained with distillation from only
the emotion recognition model (EI𝑒𝑚𝑜), the infersent model (EI𝑖𝑛𝑓 ), or receiving emotion and infersent
only as input, without knowledge distillation (input-only). Whether emotion or semantics provides the most
benefit depends on the dataset and the model.

Cornell Reddit
Model Version PPL KL Avg Ext Grd PPL KL Avg Ext Grd

HRED

baseline 52.311 - .471 .329 .331 41.730 - .649 .394 .474
input only 47.911 - .549 .381 .392 41.227 - .644 .395 .469
EI𝑒𝑚𝑜 48.619 - .562 .359 .416 47.395 - .541 .310 .371
EI𝑖𝑛𝑓 47.988 - .562 .381 .405 41.083 - .646 .394 .472
EI 47.636 - .560 .383 .400 41.245 - .651 .398 .482

VHRED

baseline 49.414 .264 .539 .352 .395 36.240 .188 .635 .383 .464
input only 49.819 .442 .543 .353 .393 40.248 .312 .630 .377 .456
EI𝑒𝑚𝑜 51.346 .636 .552 .358 .401 36.212 .199 .631 .380 .458
EI𝑖𝑛𝑓 52.143 .702 .539 .346 .392 36.518 .222 .637 .381 .463
EI 50.526 .517 .545 .355 .394 35.510 .167 .636 .392 .465

VHCR

baseline 61.000 .562 .532 .345 .382 36.736 .267 .619 .371 .448
input only 50.966 .558 .531 .344 .382 37.342 .287 .608 .365 .431
EI𝑒𝑚𝑜 52.407 .590 .585 .374 .442 37.449 .254 .619 .366 .444
EI𝑖𝑛𝑓 53.085 .575 .544 .356 .390 37.109 .199 .629 .378 .457
EI 49.243 .475 .588 .369 .444 37.198 .231 .639 .394 .469
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Figure 3-9: The learned coefficients (𝜆𝑖) within the
hybrid metric (𝑀𝐻 ). Using a leave-bot-out method, we
observe that the 𝜆𝑖s are stable. The error bars show 90%
confidence intervals. See Section 3.4.3 for details about
calculation of these metrics.
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Figure 3-10: Correlation matrix show-
ing the relationships between different as-
pects of interactive human evaluation. We
observe a strong correlation across these
aspects.

3.7.2 Hybrid metric coefficients

We optimized the coefficients of sub-components of the hybrid metric using a leave-bot-out

scenario. As shown in Figure 3-9, we observe that 𝜆𝑖s are stable across these training

iterations. However, because we have optimized a linear regression equation and some

of the features have overlapping information, such as different aggregation methods for

calculating word coherence, we do not suggest using 𝜆𝑖s for direct interpretation; further

investigation is required.

3.7.3 Human interactive ratings correlation table

Figure 3-10 provides detailed information about different metrics from interactive human

ratings. We observe that quality is highly correlated with other aspects of the conversation.

Specifically, it is most strongly correlated with contingency, which further highlights the

importance of semantic metrics of bot-generated responses in a good quality conversation.

It also has high correlation with empathy.
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Figure 3-11: Correlation matrix showing the relationships between different automated metrics on self-
play trajectories and interactive human ratings aggregated on the bot-level. We observe that inducing positive
sentiment as measured by Sentiment and Laughter, and being able to generate longer sentences in self-play
are associated with higher quality model ratings. It is worth mentioning that maintaining extreme similarity
in sentiment or semantics or just asking questions in self-play conversation trajectories could backfire by
reducing the diversity of generated responses, though applicable to interactive human data. Most importantly,
our novel hybrid metric applied to self-play (𝑀𝐻 -B/B) is highly correlated with all human ratings of the
dialog model. Postfixes: -I: Interactive human evaluation, -B: Calculated on bot response, -B/B: Metric
applied to self-play on two consecutive bot generated utterances when the bot converses with itself. See
Section 3.4.3 for details about calculation of these metrics.

3.7.4 Self-play correlation table

Figure 3-11 provides detailed information about the introduced metrics applied to self-play.

We observe that several sentiment, semantic, and engagement metrics also transfer to self-

play trajectories and the introduced hybrid metric, 𝑀𝐻 , is highly correlated with human

quality ratings aggregated on a bot-level. However, exploiting sentiment or semantic

similarity in a self-play scenario should be avoided as it hurts ratings of the model,

especially diversity of responses.
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3.7.5 Additional correlation statistics

Figure 3-12 and 3-13 provide Spearman’s 𝜌 and Kendall’s 𝜏 correlation coefficients

between human metrics and automated metrics. These tests do not assume a linear

correlation as opposed to the Pearson correlation. Similarly to the Pearson correlation

results provided in Figure 3-8, these values provide additional evidence, further confirming

the superiority of sentiment metric as well as the newly proposed self-play approximation

of the hybrid metric 𝑀𝐻 .

3.7.6 Reddit casual conversation corpus details

Using the 1.7 Billion post comments dataset hosted on Google BigQuery, we extracted post

ids for all posts on r/CasualConversation from July 2018 to December 2018. For

each post, we built a conversation tree of comments and subsequent replies to extract three-

turn dialog. We removed links, excluded [REMOVED] and [DELETED] tag comments, and

only used text before “edit” comments to preserve the original content in the conversation.

We make this dataset available for public use 11.

3.7.7 Embedding-based metrics

Embedding Average Taking the mean word embedding of the generated sentence 𝑒𝑔 and

the target sentence 𝑒𝑡, the embedding average metric is the cosine distance between the

two.

𝑒𝑡 =

∑︀
𝑤∈𝑡 𝑒𝑤

|
∑︀

𝑤′∈𝑡 𝑒𝑤′ |
(3.6)

AVG(𝑒𝑡, 𝑒𝑔) = 𝑐𝑜𝑠(𝑒𝑡, 𝑒𝑔) (3.7)

Vector Extrema The extrema vector for a sentence can be calculated by taking the

most extreme value for each dimension (𝑒(𝑑)𝑤 ) among the word vectors in the sentence.

11https://affect.media.mit.edu/neural_chat/datasets
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Figure 3-12: Spearman correlations between five human metrics and automated metrics. Sentiment -U
has higher correlation with interactive human ratings than prior metrics. Hybrid Metric MH -B/B, our
novel self-play based metric, has higher correlation across all human metrics more than any other metric
proposed to-date. Notes: -U: Calculated on user response, -B: Calculated on bot response, -U/B: Calculated
between user and bot response, -B/B: Calculated between consecutive bot utterances.
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Figure 3-13: Kendall correlations between five human metrics and automated metrics. Sentiment -U has
higher correlation with interactive human ratings than prior metrics. Hybrid Metric MH -B/B, our novel
self-play based metric, has higher correlation across all human metrics more than any other metric proposed
to-date. Notes: -U: Calculated on user response, -B: Calculated on bot response, -U/B: Calculated between
user and bot response, -B/B: Calculated between consecutive bot utterances.

The extrema embedding metric is again the cosine distance between the extrema sentence

109



Figure 3-14: Static single-turn evaluation interface crowdworkers see.

vectors.

𝑒
(𝑑)
𝑡 =

⎧⎪⎨⎪⎩max𝑤∈𝑡 𝑒
(𝑑)
𝑤 if 𝑒(𝑑) > |min𝑤′∈𝑡 𝑒

(𝑑)
𝑤′ |

min𝑤∈𝑡 𝑒
(𝑑)
𝑤 otherwise

(3.8)

EXT(𝑒𝑡, 𝑒𝑔) = 𝑐𝑜𝑠(𝑒𝑡, 𝑒𝑔) (3.9)

Greedy Matching The greedy matching distance is computed by matching word

vectors in a source sentence (𝑠) with the closest words vectors in the target sentence(𝑠).

𝐺(𝑟, 𝑟) =

∑︀
𝑤∈𝑟; max�̂�∈𝑟 𝑐𝑜𝑠(𝑒𝑤, 𝑒�̂�)

|𝑟|
(3.10)

GRD(𝑠, 𝑡) =
𝐺(𝑠, 𝑡) + 𝐺(𝑡, 𝑠)

2
(3.11)
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Table 3.6: Results from human static evaluation for EI vs. Baseline models for HRED, VHRED, and
VHCR models across quality, fluency, relatedness and empathy pairwise comparisons with 90% confidence
intervals

Cornell Reddit
Model Metric Wins % Losses % Ties % Wins % Losses % Ties %

HRED-EI

quality 40.8 ± 4.9 24.5 ± 4.9 34.8 ± 9.2 31.3 ± 5.2 29.5 ± 6.6 39.3 ± 10.7
fluency 10.3 ± 4.4 17.3 ± 4.1 72.5 ± 8.1 22.8 ± 5.3 20.0 ± 7.1 57.3 ± 11.2
relatedness 36.3 ± 6.5 28.7 ± 4.8 35.0 ± 7.9 34.3 ± 2.8 30.3 ± 7.8 35.5 ± 9.7
empathy 37.8 ± 7.2 24.5 ± 5.6 37.8 ± 8.9 32.5 ± 3.4 31.2 ± 5.9 36.3 ± 8.0

VHRED-EI

quality 36.9 ± 4.7 36.6 ± 5.6 26.6 ± 6.9 39.0 ± 7.0 34.0 ± 5.3 27.0 ± 8.9
fluency 23.4 ± 9.6 27.7 ± 8.3 48.9 ± 16.3 29.0 ± 13.6 23.3 ± 9.3 47.7 ± 21.6
relatedness 37.4 ± 5.4 33.1 ± 7.2 29.7 ± 9.6 38.3 ± 5.6 33.0 ± 5.1 28.7 ± 9.0
empathy 36.6 ± 9.4 34.0 ± 8.4 29.4 ± 15.8 34.7 ± 8.7 33.7 ± 6.7 31.7 ± 10.9

VHCR-EI

quality 33.0 ± 6.1 29.0 ± 5.4 38.0 ± 10.1 33.7 ± 7.9 27.3 ± 3.3 39.0 ± 8.6
fluency 13.5 ± 4.1 25.5 ± 4.3 66.0 ± 7.7 24.7 ± 7.2 18.3 ± 5.2 57.0 ± 10.2
relatedness 40.8 ± 4.8 26.8 ± 6.8 32.5 ± 10.5 28.3 ± 6.6 31.3 ± 3.6 40.3 ± 8.4
empathy 32.8 ± 6.6 28.0 ± 7.8 39.3 ± 13.7 30.3 ± 3.9 24.0 ± 4.6 45.7 ± 7.6

3.7.8 Static evaluation setup details

We replicated the static evaluation found in previous work [183, 223]. We sampled

conversation contexts from the test set of each corpus and generated samples by each

model based on these contexts. After filtering by context length (>10 tokens) and removing

contexts which contain <unknown>tokens, we sampled 100 examples. We divided each

set of 100 examples into two batches of 50 for annotators to rate. Annotators recruited

through Amazon Mechanical Turk were first trained with an example question. Annotators

must be in the United States and had to correctly answer all training questions before

beginning the task. Figure 3-14 shows the interface displayed to crowd-workers in the

static evaluation task. We asked annotators to select which sentence was better for quality,

fluency, relatedness, and empathy. Note that in static single-turn evaluation, annotators

only rate a single bot-generated response; thus they cannot judge the diversity of response

generation in the dialog model and only rate the remaining four qualities. Table 3.6

summarizes the results for all 4 metrics and is an uncondensed version of table 3.4. One

notable exception to the pattern of EI models winning is fluency; baseline models trained

on the CORNELL corpus generated more fluency wins.

Noting the high disagreement between annotators in this task, we further examined the
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Table 3.7: Count of ambiguous examples in human static evaluation.

Cornell Reddit
HRED VHRED VHCR HRED VHRED VHCR

Quality 12 13 15 26 15 9
Fluency 4 10 10 12 20 6
Relatedness 11 12 10 15 13 7
Empathy 16 9 12 14 17 7

Figure 3-15: Interactive evaluation chat interface

ambiguous examples in the human evaluation test set. We define an ambiguous example

as a question where an equal number of annotators select the first sentence as better

as the second sentence. If the two examples were similar, annotators would select the

“tied" option. An equal number of selections for each answer as the winner indicates a

disagreement in perception. Table 3.7 summarizes the number of ambiguous examples

per model and metric out of 100 in total for each box. After removing these ambiguous

example from calculating wins, losses and ties, the results are similar to table 3.6. The

number of ambiguous samples further highlights the noisy and unreliable nature of static

single-turn evaluation.
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Table 3.8: Summary table of number of human interactive ratings collected per model.

Cornell Reddit
HRED VHRED VHCR HRED VHRED VHCR

Baseline 55 46 53 55 36 39
EI 49 39 42 56 44 52

3.7.9 Interactive evaluation details

For our interactive evaluation, we built a platform to mimic a natural chat setting. Figure

3-15 is an example conversation within the platform that interactive evaluation participants

see. Annotators can optionally click the up and down arrows beside each chatbot response

to give feedback on the specific utterance. Once 3 or more turns of the conversation has

taken place, participants may click “Close Chat and Rate". This will take them to the rating

page where the conversation to be rated is presented along side the 7 point Likert scale

questions used to asses the conversation (Figure 3-5).

Participants both from Amazon Mechanical Turk and from the authors’ institution

were recruited for interactive evaluation. Although the minimum required number of turns

is 3, the average number of responses per conversation of participants varied between

3.00-10.58 turns with the average at 5.43 turns. Table 3.8 summarizes the number of

ratings collected for each model.

The average rating each annotator gave differed significantly between annotators.

As a result, we also computed scores for interactive evaluation after normalizing each

annotator’s scores. We restricted ratings down to only annotators who completed 10 or

more ratings which left 301 ratings. Similar to the results without normalizing annotator

scores in Table 3.2, the mean ratings for EI (Emotion+Infersent) models were higher than

the mean ratings for the baseline models.
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3.7.10 Website server setup and configuration

The server was hosted on a Google Cloud Platform virtual instance with 64GB of RAM

and a NVIDIA Tesla P100 graphics card. The backend was a Django program being served

by NGINX and uWSGI. For simplicity, we opted to have the Django process import the

chatbots into the same Python process as Django, rather than have the two connect to

each other via other means such as sockets. This configuration decreased development

time and increased reliability, but it would need to be revisited if the server needed to

scale several orders of magnitude past what was required for this study. The current

configuration was still able to support hundreds of simultaneous users and host more than

30 bots concurrently.

The chatbots were kept in a separate project from the Django project and maintained

separately from the server code. Each chatbot extended an abstract class that defined

key methods for the Django program to use, and was registered to a globally accessible

dictionary via a decorator. The Django project was provided the path to the Chatbots

project in its PYTHONPATH, so it could import the dictionary in which all the chatbot

objects had been registered and use that to dynamically determine which chatbots were

available and to access them in its views.

It is important to note that the chatbots used PyCUDA, and PyCUDA does not work in

a multiprocessing environment. Because of this, uWSGI needed to be configured to only

have one python process and to disable any attempt at multiprocessing. Furthermore, the

chatbots required substantial startup times, so all chatbots are kept in memory at all times

in the Django process. In order to keep all the chatbots in memory concurrently, we needed

a very high amount of RAM on our server and opted for a 64GB virtual instance, and a

GPU with 16GB RAM. This combination of CUDA to run the chatbots on the GPU with a

high amount of RAM to keep all bots in memory at the same time resulted in incredibly

fast server response times, with effectively no increase in response time when using the

bots in requests compared to requests that did not.
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(a) (b)

Figure 3-16: (a) 64-most frequent emojis as predicted by [52] used for calculating emo-
tion embeddings. (b) Assigned weights used for reducing the 64-dimensional emotion
embedding into a Sentiment score.

For further information and instructions on server configuration, please read the server

documentation available at https://github.com/asmadotgh/neural_chat_

web.

3.7.11 Emotion embedding details

We calculate emotion embeddings of an utterance using a using a state-of-the-art sentiment-

detection model [52]. This pre-trained model outputs a probability distribution over 64

most-frequently used emojis as presented in [52]). We define a set of weights over the

emojis and calculate the weighted sum over an emotion embedding vector to derive a

Sentiment score which is higher for positive sentiment and lower for negative sentiment

(See Figure 3-16).

3.7.12 Hyper-parameter tuning details

For the baseline models that were trained on the CORNELL dataset, we used the parameters

reported in [183, 222, 223] that achieved state-of-the-art results for HRED, VHRED, and

VHCR models trained on the same dataset, respectively. For EI models, we compared

a combination of values for encoder hidden size (400, 600, 800, 1250), decoder hidden

size (400, 600, 800, 1250), context size (1000, 1250), embedding size (300, 400, 500),
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word drop (0, .25), sentence drop (0, .25), beam size (1, 5). Learning rate (.0001), dropout

(.2) were fixed. Batch size 80 was used. If due to memory limitation the job was not

successfully completed, batch size 64 was used. Additionally, we tuned the EI parameters,

i.e., emotion weight (25, 150), infersent weight (25K, 30K, 50K, 100K), emotion sizes

(64, 128, 256), infersent sizes (128, 1000, 2000, 4000). Due to limited computational

resources, we were not able to run a grid search on the aforementioned values. Instead we

used combinations of the parameters that heuristically were more viable.

For the models that were trained on the REDDIT dataset, a set of properly tuned

baseline parameters were non-existent. Thus, to ensure fair comparison, we used a similar

approach for baseline and EI hyper-parameter tuning: We explored a combination of

values for encoder hidden size (400, 600, 800, 1250), decoder hidden size (400, 600, 800,

1250), context size (1000, 1250), embedding size (300, 400, 500, 600), word drop (0, .25),

sentence drop (0, .1, .25), and beam size (1, 5). Learning rate (.0001), dropout (.2) were

fixed. Batch size 64 was used. If due to memory limitation the job was not successfully

completed, batch size 32 was used. Due to limited computational resources, we were not

able to run a grid search on all the aforementioned values. Instead we used combinations

of the parameters that heuristically were more viable. To ensure fair comparison, any

selected combination was tested for both baseline and EI models. Then, for EI models,

we tuned the parameters that were solely relevant to the EI design, such as the weight of

emotion and infersent term in the loss function and the size of the added discriminator

networks: Emotion weight (25), infersent weight (25K, 50K, 100K), emotion sizes (64,

128, 256), infersent sizes (100, 128, 1000, 2000, 4000). See Table 3.9 for a summary of

the final selected parameters.

3.7.13 Self-Play Overlap Analysis

As a post hoc sanity check on the conversations generated from self-play, we check

whether there is i) overlap among generated conversations, and ii) overlap between these
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Table 3.9: Hyper-parameters used for different models.
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Cornell

Baseline
HRED 80 .2 400 400 1000 300 .0 .0 5 - - - -
VHRED 80 .0 1000 1000 1000 400 .25 .0 5 - - - -
VHCR 80 .2 1000 1000 1000 500 .25 .25 5 - - - -

EI
HRED 64 .2 1000 1000 1000 500 .0 .0 1 25 128 100K 4000
VHRED 80 .2 1250 1250 1000 600 .0 .0 1 25 128 30K 128
VHCR 32 .2 1000 1000 1250 600 .0 .0 1 25 128 25K 4000

Reddit

Baseline
HRED 64 .2 1000 1000 1000 500 .0 .0 1 - - - -
VHRED 32 .2 1250 1250 1000 600 .0 .0 1 - - - -
VHCR 32 .2 1000 1000 1250 600 .0 .25 1 - - - -

EI
HRED 64 .2 1000 1000 1000 500 .0 .0 1 25 128 25K 2000
VHRED 32 .2 1250 1250 1250 600 .0 .0 1 25 128 100K 4000
VHCR 32 .2 1000 1000 1250 600 .0 .0 1 25 128 100K 4000

Table 3.10: Percentage of pairs of conversations in each 100 sample for each model where there are 3 or 5
consecutive conversation turns that are exactly the same.

Cornell Reddit
Model Version 3-turn overlap 5-turn overlap 3-turn overlap 5-turn overlap

HRED
baseline 19.49% 1.76% 2.02% 0.24%
EI 6.48% 0.30% 2.12% 0.16%

VHRED
baseline 0% 0% 0% 0%
EI 0.16% 0% 0.16% 0%

VHCR
baseline 0% 0% 0% 0%
EI 0% 0% 0% 0%

conversations and the training set. High overlap among generated conversations would

indicate that there is a lack of diversity in the conversations generated by self-play while

high overlap with the training set suggests self-play may be memorizing training dialog.

To measure overlap between the 100 conversations generated in each model, we

consider all 3 and 5 consecutive conversational turns over the 10 turns in each conversation.

We compare each pair of conversations in the 100 generated conversations in total to

117



Table 3.11: Percentage of of conversations (100 sample for each model) where there are 2 or 3 consecutive
conversation turns that match the training set.

Cornell Reddit
Model Version 2-turn overlap 3-turn overlap 2-turn overlap 3-turn overlap

HRED
baseline 58% 0% 0% 0%
EI 65% 0% 0% 0%

VHRED
baseline 8% 0% 5% 0%
EI 5% 0% 12% 0%

VHCR
baseline 4% 0% 4% 0%
EI 3% 0% 3% 0%

compute a percentage of conversations which contain overlap in this pairwise comparison.

Table 3.10 summarizes these results and illustrates that overlap is not significant for most

models. The exception is the non-variational models trained on the Cornell corpus (e.g.

HRED Cornell). Qualitative evaluation reveals that these are degenerate cases where

“what?" or “I don’t know" or “I’m sorry" are repeated multiple turns.

To measure repetition with respect to the training set, we take all 2-turn and 3-turn

windows in the self-play generated conversations and compare with the entire training

set to check whether there is overlap. Table 3.11 shows the percentage of conversations

(100 total for each model) where there is a 2-turn or 3-turn dialog appearing exactly in the

training set. Since each conversation is 10 turns long, all of the conversations are distinct

from the training set and no conversation contains more than 2-turns of overlap with the

training set. The 2-turn overlap again appears due to cases where “what?” and “hi” are

repeated for 2 turns.

3.8 Conclusions

A major obstacle in open-domain dialog generation is the predominant optimization of an

objective function that does not closely match human judgment of conversation quality

in a naturalistic chat. To alleviate this problem, we have combined interactive human

data with psychologically-motivated measures and introduced a novel hybrid metric to
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reflect human-centered optimality criteria. Using this metric in a self-play framework

provides results that are strongly correlated with human judgment of chatbot empathy

(𝑟 > .8) and quality (𝑟 > .7), and perform significantly better than the state of the art

(r=.44, p<0.001) [149]. Additionally, we have demonstrated a significant improvement to

several hierarchical seq2seq generative models using regularization of the utterance level

of the hierarchy with knowledge distillation. Finally, we have open-sourced the platform

together with a new REDDIT dataset. In follow-up works, we have successfully used

the proposed metrics as reward functions in hierarchical and non-hierarchical off-policy

learning scenarios and showed they resulted in higher-quality dialog based on human

evaluation and automatic metrics compared to several baselines.

3.9 Statement of Contributions

A significant collaborative effort in Roz Picard’s Affective Computing group has led to the

results presented in this chapter. The work that I led along with Judy Shen and Natasha

Jaques on approximating interactive evaluation with self-play is only a portion of this

enormous effort. Discussing research ideas in depth and implementing this work has been

truly collaborative and would not have been possible without my colleagues. Natasha

initiated research in this direction, originally intending to utilize reinforcement learning

to elicit positive response from the user. My contributions include investigating topic

modeling, implementing interfacing with sentiment and semantic regularization, propos-

ing and developing several sub-metrics, proposing and developing the self-play aspect,

conducting the exploratory analyses, and preparing and obtaining COUHES approvals. I

have also participated in training and evaluating several chatbots deployed on our platform

and rated by crowd workers on Amazon Mechanical Turk (AMT). Natasha implemented

EI regularization and took a major role in shaping the direction of this work. Judy con-

ducted the human subject studies on AMT and calculated the statistical analyses. Craig

Ferguson designed and implemented the neural.chat website. Noah Jones advised on
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psychological aspects of empathy and good conversation that guided implementation of

the hybrid metric that constitutes a major contribution of this work. Agata Lapedriza and

Roz Picard provided guidance and advice throughout the project.

Natasha and Judy led the follow-up work with off-policy RL. Natasha proposed and

implemented the modification with KL control, implemented baselines, and conducted

most of the analyses. Judy ran additional AMT studies and analyses and shaped the

framing of the work. My contributions include proposing and implementing Monte Carlo

dropout estimates to overcome the over-optimism problem of off-policy RL, setting up

additional AMT studies, and modification of the web platform for hosting new chatbots.

Abdul Saleh and Natasha led the hierarchical RL work, ranging from ideation to

implementation. I advised on the direction and implementation of hierarchical RL work.
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Chapter 4

Interpretability Benefits of Uncertainty

Quantification

Supporting model interpretability for complex phenomena where annotators can legiti-

mately disagree, such as emotion recognition, is a challenging machine learning task. In

this work, we show that explicitly quantifying the uncertainty in such settings has inter-

pretability benefits. We modify a classical network inference using Monte Carlo dropout

to measure different types of uncertainty, such as epistemic and aleatoric uncertainty.

Epistemic uncertainty is measured by the lack of confidence in one’s knowledge and is

attributed to missing information about the learning task. Aleatoric uncertainty is represen-

tative of an event’s propensity and is attributed to the stochastic behavior of observations.

We identify a significant correlation between aleatoric uncertainty and human annotator

disagreement (𝑟 ≈ .3). Additionally, we demonstrate how subjective and difficult training

samples can be identified using aleatoric uncertainty and how epistemic uncertainty can

reveal data bias resulting in unfair predictions. In addition to explainability benefits, we

observe modest performance boosts from incorporating model uncertainty.
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4.1 Introduction

Supporting interpretability of an automated prediction system in complex tasks where

human experts disagree is a challenging machine learning problem. In such settings,

answering the following questions can help understand model’s predictions: is the model

uncertain due to capturing annotator biases and their subjective perspective? Or is it

error-prone for a specific set of samples due to a distribution shift from the training data?

Can the predicted confidence scores of the model be trusted? Do they represent the true

likelihood so that we can intuit and reason about their results?

Emotion understanding is an icon for a learning setting where label ambiguity abounds.

Most researchers agree that emotion in itself is nuanced and the same input could be

assigned different labels due to change in contextual information or the perspective of

the reviewer [57]. Thus, disambiguating annotator and data bias and quantifying how

well predictive confidence can be trusted is crucial to supporting explainability in emotion

classification.

In this work, we extend beyond deterministic modeling of affect using Monte Carlo

(MC) dropout [59], a technique that requires no changes to the neural network architecture

and only minimal changes at inference time. This approach augments classification’s

per-class confidence scores with measures of uncertainty. We tease apart elements in the

uncertainty estimates and investigate how each helps in interpreting model predictions and

failure modes. We show this decomposition results in a proxy for inter-rater disagreement

capturing annotators’ bias, and a proxy highlighting bias in data that could potentially

result in unfair predictions. These insights lead to better interpretation of model behavior

and pave the way for HC optimality.

These techniques can also boost performance. We report significant improvement in

Jensen-Shannon divergence (JSD) between predicted and true class probabilities. We show

a strong correlation between total uncertainty and JSD (𝑟 ≈ .6), identifying it as a proxy

for performance. We study the influence on accuracy, especially if given the option to
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reject classifying samples where the model lacks confidence.

To summarize, we use MC dropout with traditional neural network architectures and

explore the benefits of resulting measures of uncertainty while disambiguating their source.

Our contributions include: 1) introducing a proxy for inter-annotator disagreement, 2)

demonstrating the power of such metrics in identifying difficult samples and bias in

training data along with ways to alleviate them, 3) showing improvements in performance

in addition to interpretability benefits.

4.2 Background & Related Work

Understanding what a model does not know is especially important to explain and under-

stand its predictions. State-of-the-art classification results are mostly achieved by deep

neural networks (DNN)—such as AlexNet, VGGNet, ResNet, etc.—that are deterministic

in nature and not designed to model uncertainty. Bayesian Neural Networks (BNN) have

been an alternative to DNNs, providing a distribution over model parameters at an extra

computational cost while increasing difficulty of conducting inference [37, 151]. These

computational challenges hinder scalability of BNNs.

MC dropout [59] has been introduced as an approximation of BNNs that can be

achieved by keeping the same architecture of a deterministic DNN and only making mini-

mal changes at inference time. Dropout, i.e. randomly dropping weights at training time,

is commonly used in DNNs as a regularization method. Drawing random dropout masks at

test time can approximate a BNN. Recently, [118] demonstrated ways to additionally learn

the observation noise parameter 𝜎, thus modeling epistemic and aleatoric uncertainty in

parallel. Epistemic uncertainty represents lack of confidence in one’s knowledge attributed

to missing information about the learning task. Aleatoric uncertainty is attributed to the

stochastic behavior of observations. They evaluated the approach for use in regression tasks

in depth estimation. A partial version of the model, only modeling aleatoric uncertainty,

was evaluated for classification for semantic segmentation.

123



These efforts show great potential at empowering deterministic DNNs with Bayesian

properties with negligible computational overhead. However, we will show that complex,

difficult tasks where reviewers disagree and data may not fully represent everyone, such

as affect detection, can benefit from inferring different sources of uncertainty. Despite its

importance, latent uncertainty quantification in emotion detection tasks is under-explored.

However, there have been a few efforts regarding more realistic emotion recognition by

incorporating explicit inter-annotator disagreement. For example, modeling perception of

uncertainty as measured by the standard deviation of labels captured from crowd-sourced

annotations has been studied in [92]. While such efforts are valuable in affective computing

applications, these approaches are supervised, are prone to error when annotations are

sparse and varied in number, are not capable of capturing uncertainty introduced by model

parameters or sources of noise other than human judgment.

4.3 Technical Approach

The underlying architecture of our model is an Inception-ResNet-v1 [239] for extracting

facial features, followed by a multi-layer perceptron for emotion classification. We built

upon an open-source implementation [210] of FaceNet [215]. We pre-trained the model

up to the Mixed-8b layer using cross-entropy loss on face identity classes using the

CASIA-WebFace dataset [261]. The pre-processing step included using a Multitask CNN

[264] to detect facial landmarks and extract facial bounding boxes in the form of 182×182

pixel images. Since the utility of this training mechanism is to identify faces, it learns to

ignore features that are invariant to one’s identity, e.g. facial expressions, in the later layers

of the network while the earlier layers represent lower-level features. Mixed-7a best

encoded and retained emotionally-relevant information based on our experiments (See

§4.5.1).
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4.3.1 Baseline

After extracting features from layer Mixed-7a, a fully-connected network with two

hidden layers was used to infer basic emotions. We refer to this model as Baseline. Facial

Expression Recognition (FER) is an established emotion detection dataset [82]. FER+ is

the same set of images, expanded to include at least 10 annotations from crowd-sourced

taggers [5]. We used FER+ train, private test, and public test subsets for training, hyper

parameter tuning, and evaluation of our model performance, respectively. See §4.5.1 for

details.

Figure 4-1: Left: Aleatoric uncertainty (𝑈𝑎) - Samples with lowest 𝑈𝑎 are stereotypical
expressions of emotion where annotators (almost) unanimously agree on the assigned label.
Conversely, images with the highest 𝑈𝑎 either represent subjectivity involved in human
annotations or low image quality, e.g. when the face is occluded by hands or the image
is a drawing as opposed to a photograph. Right: Epistemic uncertainty (𝑈𝑒) - Samples
with lowest 𝑈𝑒 show stereotypical expressions of emotion that are common in the training
set. On the other hand, images with the highest 𝑈𝑒 include dark-skinned subgroups, a
non-frontalized photo, and a highly illuminated image, even when there is near-perfect
agreement across human-annotators. We believe this is due to the skewed pre-training
dataset, suggesting that it is not equipped to encode such samples.

4.3.2 Epistemic & Aleatoric Uncertainties

For each input image, Baseline predicts a length-𝐶 logits vector 𝑧 which is then passed

through a softmax operation to form a probability distribution 𝑝 over a set of class labels.
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For our new model, we move away from pointwise predictions, and put a Gaussian prior

distribution over the network weights, 𝑊 ∼ 𝑁(0, 𝐼). To overcome the intractability of

computing the posterior distribution 𝑝(𝑊 |𝑋, 𝑌 ), we use MC dropout [59], performing

dropout both during training and test time before each weight layer, and approximate the

posterior with the simple distribution 𝑞𝑊𝜃 . Here, 𝑞𝑊𝜃 is a mixture of two Gaussians, where

the mean of one of the Gaussians is fixed at zero. We minimize the Kullback-Leibler (KL)

divergence between 𝑞𝑊𝜃 and the 𝑝(𝑊 |𝑋, 𝑌 ): ℒ(𝜃, 𝑝) = 1
𝑁

∑︀𝑁
𝑖=1 log 𝑝(𝑦𝑖|𝑥𝑖, 𝜃,𝑋, 𝑌 ) +

1−𝑝
2𝑁

||𝜃||2, where 𝑁 is the number of data points, 𝑝 is dropout probability, 𝑞𝑊𝜃 is the dropout

distribution, and �̂�𝑡 ∼ 𝑞𝑊𝜃 . Using MC integration with 𝑇 sampled dropout masks, we

have the approximation: 𝑝(𝑦 = 𝑐|𝑥,𝑋, 𝑌 ) ≈ 1
𝑇

∑︀𝑇
𝑡=1

𝑒𝑧
�̂�𝑐,𝑡 (𝑥)∑︀𝐶

𝑐=1 𝑒
𝑧
�̂�𝑐′,𝑡 (𝑥)

.

Inspired by [153], we use entropy in the probability space as a proxy for classification

uncertainty. To get an aggregate uncertainty measure, we marginalize over all parameters

and use the entropy of the probability vector 𝑝: 𝐻(𝑝) = −
∑︀𝐶

𝑐=1 𝑝𝑐 log 𝑝𝑐. We then

quantify the total (𝑈𝑡) and aleatoric uncertainty (𝑈𝑎) using:

𝑈𝑡 ≈ 𝐻[𝐸𝑞(𝜃|𝑋,𝑌 )[𝑝(𝑦|𝑥, 𝜃]] ≈ 𝐻[
1

𝑇

𝑇∑︁
𝑡=1

𝑝(𝑦|𝑥, �̂�𝑡)];

𝑈𝑎 ≈ 𝐸𝑞(𝜃|𝑋,𝑌 )[𝐻[𝑝(𝑦|𝑥, 𝜃)]] ≈ 1

𝑇

𝑇∑︁
𝑡=1

𝐻[𝑝(𝑦|𝑥, �̂�𝑡)]

The epistemic uncertainty 𝑈𝑒 is then defined 𝑈𝑡 − 𝑈𝑎. Note that 𝑈𝑒 will represent

mutual information between true values and model parameters and thus has a different

scale compared to 𝑈𝑎 and 𝑈𝑡 that each represent entropy of a probability distribution. For

simplicity, we refer to this model as UncNet in the rest of the chapter. The code is available

at https://github.com/asmadotgh/unc-net.
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4.4 Results & Discussion

We show that modeling and disambiguating different sources of uncertainty provides a

means to identify data that are more difficult to classify, and seek to provide interpretable

reasons for why. Similar to [195], to represent task subjectivity, we compute the probability

that two draws from the empirical histogram of human annotations disagree: 𝑑𝑖 = 1 −∑︀𝐶
𝑐=1 𝑝

2
𝑖,𝑐, where 𝐶 is the number of classes and 𝑝𝑖,𝑐 is the probability of image 𝑖 being

rated as class 𝑐.

4.4.1 A Proxy for Inter-Rater Disagreement

Classification of perceived emotions is inherently a subjective task, with disagreement

across human annotators. We hypothesize that aleatoric uncertainty is associated with

inter-annotator disagreement. We used the Pearson correlation coefficient to assess the rela-

tionship between aleatoric uncertainty (𝑈𝑎) and disagreement probability (𝑑𝑖), resulting in

a significant correlation: 𝑟 = 0.301, 𝑝 ≪ .001. This finding suggests aleatoric uncertainty

as a tool for quantifying degree of label subjectivity associated with an image.

Note that we observed no significant correlation between epistemic uncertainty and

the annotators’ disagreement probability: 𝑟 = −0.027, 𝑝 = 0.105. This is aligned with

our hypothesis that epistemic uncertainty captures the uncertainty introduced by model

parameters and is not able to capture the nuance in subjective annotations.

4.4.2 Task Subjectivity, Difficulty & Bias in Training

Figure 4-1 shows samples with the highest and lowest uncertainties. On the left, extreme

cases in terms of aleatoric uncertainty (𝑈𝑎) are listed. We observe that samples with low

𝑈𝑎 are stereotypical expressions of emotion where annotators (almost) unanimously agree

on the assigned label. The fact that “happiness” class is the second most common class in

the dataset (after “neutral”), and has a stereotypical morphology in terms of the position

of the eye corners, mouth, and teeth exposure may have contributed to the dominance of

127



“happiness" class in low 𝑈𝑎 samples. On the other hand, we observe that samples with

highest 𝑈𝑎 either represent subjectivity involved in label assignment and lack of annotators’

consensus; or low quality of an image. For example, the face occlusion or being a drawing

as opposed to a photograph.

Figure 4-1, on the right, shows extreme cases in terms of epistemic uncertainty (𝑈𝑒).

Low 𝑈𝑒 samples show similar patterns: samples with stereotypical expression of emotion

that are common in the training set. On the other hand, we see different patterns in samples

with high 𝑈𝑒. We observe that the model has low confidence in the predictions for dark-

skinned subgroups. Our interpretation is that the CASIA-WebFace dataset that was used

for pre-training the model is highly skewed. It contains faces of celebrities that IMDB lists

as active between 1940 and 2014. Most of these celebrities are white. That may explain

why the model has high 𝑈𝑒 in making a prediction for non-white input images. We also

see a sample that exemplifies a non-frontalized photo, which the human annotators were

able to unanimously assign a “neutral” label despite its atypical viewpoint in the dataset.

Since the pre-training process included a frontalization pre-processing step, we believe

the current model is not capable of finding meaningful representations for non-frontalized

photos and that is why this sample has high 𝑈𝑒. Factors such as different illumination may

also result in higher 𝑈𝑒.

4.4.3 Performance

The Brier score [15, 50, 141] is a commonly-used metric for quantifying the accuracy of

probabilistic predictions: 𝐵 = 1
𝑁

∑︀𝑁
𝑛=1

∑︀𝐶
𝑐=1(𝑦𝑛,𝑐 − 𝑦𝑛,𝑐)

2. 𝑁 is the number of samples,

𝐶 is the number of classes, 𝑦 is a one-hot representation of true labels, and 𝑦 is the

predicted confidence scores. Since we have multiple annotations per data point, each

pair of <annotation, sample> is treated separately. First, we confirm that samples with

lower uncertainty measured by the MC dropout approach also have lower Brier scores.

We sort samples based on predictive uncertainty estimates and calculate the correlation
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between Brier score and 𝑈𝑎, 𝑈𝑒, and 𝑈𝑡. There was a significant Pearson correlation

between each of these pairs: 𝑟𝑈𝑎,𝐵𝐶𝐸 = .880, 𝑝 ≪ .00001; 𝑟𝑈𝑒,𝐵𝐶𝐸 = .710, 𝑝 ≪ .00001;

𝑟𝑈𝑡,𝐵𝐶𝐸 = .884, 𝑝 = .00007. This confirms that lower uncertainty measured by the MC

dropout approach is associated with better probabilistic accuracy as measured by the Brier

score.

We also hypothesized performance gains using UncNet. Due to task subjectivity and

annotation spread (§4.5.2), we believe measures that rely on a binary true/false assumption

for evaluation do not fully represent the nuance of our problem setting. Therefore, we

use Jensen-Shannon divergence to quantify the distance between predicted and true class

probabilities: 𝐽𝑆𝐷(𝑝, 𝑝) = 𝐾𝐿(𝑝||𝑚)+𝐾𝐿(𝑝||𝑚))
2

. Here, 𝑚 is the point-wise mean of 𝑝

and 𝑝 and 𝐾𝐿 is the Kullback-Leibler divergence. Lower 𝐽𝑆𝐷(𝑝, 𝑝) represents better

performance. A paired-samples t-test was conducted to compare the 𝐽𝑆𝐷s in Baseline

and UncNet. There was a significant difference in 𝐽𝑆𝐷 for Baseline (𝑀 = 0.473, 𝑆𝐷 =

0.131) and UncNet (𝑀 = 0.461, 𝑆𝐷 = 0.140); 𝑡(3578) = 9.335, 𝑝 ≪ .001, confirming

our hypothesis.

We take a more granular look and hypothesize that samples with higher uncertainty

have higher 𝐽𝑆𝐷(𝑝, 𝑝). To test this, a Pearson correlation coefficient was computed to

assess the relationship between 𝑈𝑎, 𝑈𝑒, 𝑈𝑡 and 𝐽𝑆𝐷 in UncNet. Each pair showed a

significant correlation (𝑝 ≪ .00001): 𝑟𝑈𝑎,𝐽𝑆𝐷 = .583; 𝑟𝑈𝑒,𝐽𝑆𝐷 = .100; 𝑟𝑈𝑡,𝐽𝑆𝐷 = .591.

This finding further confirms our hypothesis: lower uncertainty is associated with a better

match between prediction and groundtruth. Similar to findings of [118], we see aleatoric

uncertainty plays a more significant role in such identification.

Though accuracy may not fully represent this nuanced problem setting, we also checked

how UncNet compared to the Baseline as measured by accuracy. We observed that UncNet

has the potential to improve performance modestly, but that if the model had the option

to reject classifying samples it is not confident in up to 25%, it improves significantly in

performance, by as much as 8%. See §4.5.4 for details.

Additionally, Figure 4-2 shows our investigation of the model calibration through
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Figure 4-2: Reliability diagram for Baseline and UncNet of FER+ hold out test data [5].
Soft-labels result in well-calibrated predictions.

the reliability diagram for both Baseline and UncNet. As plotted, both models are close

to the 45∘ line. This is aligned with previous research findings showing evidence of

well-calibrated predictions when trained with soft labels [173, 220]. We observe that the

near-perfect calibration in the Baseline does not leave space for further improvement.

4.5 Supplementary Materials

Input Stem 5 x
Inception-resnet-A

10 x 
Inception-resnet-BReduction-A Reduction-B 5 x

Inception-resnet-C
Average 
Pooling

Softmax

Mixed-6a Mixed-6bMixed-5a Mixed-7a Mixed-8a Mixed-8b

2 x 
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Average 
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Figure 4-3: Model architecture: An Inception-ResNet-v1 followed by an average pooling
layer and a fully-connected network with two hidden layers (FC). Pre-training on CASIA-
WebFace dataset has been conducted on the full Inception-ResNet-V1. We froze the
weights of the network and used up to the Mixed-7a layer to extract features from raw
images. The remaining unused layers of Inception-ResNet-v1 are in grey. We then stack
two FCs on the Mixed-7a layer after average pooling. Dropout is only applied to the FC
layers.
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Table 4.1: Validation accuracy and loss of predicting facial expression emotions on FER+
dataset, using the features extracted from different layers of FaceNet, pre-trained on two
different datasets: CASIA-WebFace and VGGFace2.

Mixed-5a Mixed-6a Mixed-6b Mixed-7a Mixed-8a Mixed-8b

Accuracy (%)
CASIA-WebFace 49.85 54.27 52.81 55.75 52.45 52.50
VGGFace2 50.60 54.80 55.11 55.50 50.69 50.46

Loss
CASIA-WebFace 1.589 1.516 1.555 1.514 1.580 1.554
VGGFace2 1.607 1.527 1.519 1.513 1.589 1.598

4.5.1 Model Architecture and Pre-Training Details

Figure 4-3 shows the detailed model architecture. Note that the modules on the top

represent an Inception-ResNet-v1 architecture. We have used up to layer Mixed-7a

for feature extraction from raw images and added a fully connected (FC) network with

two hidden layers of size 128×128. This represents the Baseline architecture. The main

difference in UncNet is adding a dropout mask before each layer of FC, not only during

training, but also at inference time.

For face similarity pre-training, we treated the intermediate layer that was used to

export features from a raw image as a hyper-parameter that was tuned according to valida-

tion loss. Our experiments included Mixed-5a, Mixed-6a, Mixed-6b, Mixed-7a,

Mixed-8a, and Mixed-8b layers. We observed that the Mixed-7a layer best encoded

and retained emotional information from the input face crop. Table 4.1 summarizes our

exploration results.

4.5.2 Annotation Disagreement Details

Figure 4-4 shows the distribution of disagreement probability (𝑑𝑖) for all images in the

training set. Histogram heights show a density rather than the absolute count, so that the

area under the fitted curve is one.
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Figure 4-4: Distribution of annotators’ disagreement probability (𝑑𝑖) on FER+ training
samples. The histogram heights are scaled to represent density rather than absolute count,
so that the area under the fitted curve is one.

4.5.3 Detailed Calibration Results

In this section, we report a range of calibration scores for Baseline and UncNet. Further,

we show how these scores are related to the predictive uncertainty estimates of UncNet.

Scholars have introduced a range of calibration scores. Maximum Calibration Error

(MCE) and Expected Calibration Error (ECE) approximate calibration error by quantization

of uncertainty bins and have been adopted in many recent publications [90]:

𝑀𝐶𝐸 =
𝐵

max
𝑏=1

|𝑎𝑐𝑐(𝑏) − 𝑐𝑜𝑛𝑓(𝑏)|

𝐸𝐶𝐸 =
𝐵∑︁
𝑏=1

𝑛𝑏

𝑁
|𝑎𝑐𝑐(𝑏) − 𝑐𝑜𝑛𝑓(𝑏)|

Here 𝑛𝑏 is the number of predictions in bin 𝑏, 𝑁 is the number of samples, 𝑎𝑐𝑐(𝑏) is

the accuracy of prediction in bin 𝑏, and 𝑐𝑜𝑛𝑓(𝑏) is the average prediction confidence score

in bin 𝑏. Recently, new metrics have been proposed to overcome the limited assumption

of mutually exclusiveness of classes and improve robustness to label noise [176]. Static

Calibration Error (SCE) is a metric where prediction for all classes is taken into account

as opposed to only the argmax of softmax outputs. Adaptive Calibration Error (ACE)
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is an extension of SCE where instead of equidistant bins, confidence scores are sorted

and their percentiles represent “ranges", parallel to “bins" in SCE. Thresholded Adaptive

Calibration Error (TACE) is an extension to ACE where values with at least 𝜖 confidence

are taken into account. SCE, ACE, and TACE can be formally defined as the following:

𝑆𝐶𝐸 =
1

𝐶

𝐶∑︁
𝑐=1

𝐵∑︁
𝑏=1

𝑛𝑏𝑐

𝑁
|𝑎𝑐𝑐(𝑏, 𝑐) − 𝑐𝑜𝑛𝑓(𝑏, 𝑐)|

𝐴𝐶𝐸 =
1

𝐶𝑅

𝐶∑︁
𝑐=1

𝑅∑︁
𝑟=1

|𝑎𝑐𝑐(𝑟, 𝑐) − 𝑐𝑜𝑛𝑓(𝑟, 𝑐)|

𝑇𝐴𝐶𝐸 =
1

𝐶𝑅

𝐶∑︁
𝑐=1

∑︁
𝑟∈𝑅′

|𝑎𝑐𝑐(𝑟, 𝑐) − 𝑐𝑜𝑛𝑓(𝑟, 𝑐)|

𝑤ℎ𝑒𝑟𝑒 ∀𝑟 ∈ 𝑅′ : 𝑐𝑜𝑛𝑓(𝑟, 𝑐) > 𝜖

Table 4.2: Summary of additional calibration error metrics for Baseline vs. UncNet. Near-
perfect calibration with soft-labels and dependency of these metrics on quantization may
be potential reasons for having inconclusive results.

Calib.
Error

ECE
(%)

MCE
(%)

SCE
(%)

ACE
(%)

TACE
(%) BCE

Baseline 2.330 6.231 0.479 0.390 0.393 0.661
UncNet 1.876 10.326 0.417 0.526 0.506 0.649

Table 4.2 summarizes these metrics using B/R=10. We did not observe any conclusive

results comparing Baseline and UncNet conditions or using uncertainty quantiles. Our

interpretation is that the close-to-perfect calibration with soft-labels, as well as identified

problems with the dependence of these metrics on quantization may have resulted in a null

result. Further study in this area is required to better understand what these metrics can

and cannot capture.
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4.5.4 Detailed Performance Metrics

In this section, we report accuracy for a random run on the test set. Accuracy is defined

as the percentage of samples where predicted maximum probability class maps to the

annotated maximum probability class. Table 4.3 summarizes our findings. For future, we

will add further performance metrics such as average precision or per-class accuracy and

provide confidence bounds using bootstrapping.

Table 4.3: Summary of performance metrics for Baseline vs. UncNet and how it is influ-
enced if given the possibility of rejecting classification of certain samples. 𝑈𝑒: Epistemic
uncertainty, 𝑈𝑎: Aleatoric uncertainty, 𝑈𝑡: Total uncertainty.

Model Evaluation Dataset Accuracy (%)

Baseline FER+ Test 54.848
UncNet FER+ Test 56.943
UncNet - low 𝑈𝑒 75% of FER+ Test 57.452
UncNet - low 𝑈𝑎 75% of FER+ Test 62.481
UncNet - low 𝑈𝑡 75% of FER+ Test 62.332

4.6 Limitations and Future Work

This chapter investigated the relationship between decomposition of uncertainty using

the Monte Carlo dropout technique and inter-rater disagreement in one particular domain,

facial expression estimation. While we hypothesize these observations to be generalizable

to other domains and techniques, further studies are required to confirm this hypothesis.

For future work, we would like to consider other methods of uncertainty estimation ranging

from Naive Bayes classifiers to weight uncertainty estimation [10] and other datasets such

as COCO [144] and multi-annotator ImageNet [243].

Another avenue for future work is strengthening the results through additional quanti-

tative approaches. An example experiment could be designed to confirm that epistemic

and aleatoric uncertainties follow patterns that a secondary model can predict better than
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random chance and are not just artifacts of the Monte Carlo sampling process. Another

future experiment could complement the qualitative results with more quantitative ap-

proaches. For example, by labeling image attributes such as pose or skin tone using other

classifiers, one can verify the patterns observed among the samples with the highest or

lowest epistemic or aleatoric uncertainties quantitatively.

4.7 Conclusion

One of the dimensions of moving towards HC optimality is improving interpretation of

models by humans. In this chapter, we focused on the often subjective task of perceived

emotion classification and demonstrated how a classical network architecture can be altered

to predict measures of epistemic and aleatoric uncertainties and how these measures can

help interpretation of model’s confidence scores. We presented evidence for aleatoric

uncertainty being a proxy for inter-annotator disagreement and showcased how the mea-

sured aleatoric uncertainty can identify low quality inputs or more subjective samples.

Additionally, we presented explorations of how epistemic uncertainty can represent bias in

training data and suggest directions to alleviate that. Our results suggest that the predicted

total uncertainty can act as a surrogate for degree of calibration, even on tasks without

human-expert consensus. Finally, we showed there are other benefits such as potential

performance improvements.

4.8 Statement of Contributions

I started broadly exploring uncertainty in the affective computing context when I began

an internship at Google Research. I am grateful to my host Brendan Jou, and my co-

host, Brian Eoff. Though this thesis does not include my work during that internship, it

influenced this work’s direction after returning to MIT. I framed this work, implemented

it, and conducted the analyses. I reached out to Brendan and Brian to consult with their
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experience, and Roz continued her advisement throughout the project.
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Chapter 5

DISSECT: Disentangled Simultaneous

Explanations via Concept Traversals

Explaining deep learning model inferences is a promising venue for scientific understand-

ing, improving safety, uncovering hidden biases, evaluating fairness, and beyond, as argued

by many scholars. Using counterfactual generation for investigating a classifier’s decisions,

one can ask: what if this sample were to be classified as the opposite class, and how would

it differ? This is one of the principal benefits of counterfactual reasoning about what does

not and cannot exist in the data, a quality that many other mediums of explanation such as

heatmaps and influence functions are inherently incapable of doing. However, most previ-

ous work on generative explainability cannot disentangle important concepts effectively,

produces poor quality or unrealistic examples, or fails to retain relevant information. We

propose a novel approach, DISSECT, that trains a generator, a discriminator, and a concept

disentangler simultaneously to overcome such challenges using little supervision. Our

method generates Concept Traversals (CTs), defined as a sequence of generated examples

with increasing degrees of concepts that influence a classifier’s decision. By training a

generative model from a classifier’s signal, DISSECT offers a way to discover a classifier’s

inherent "notion" of distinct concepts automatically rather than rely on user-predefined

concepts. We show that DISSECT produces CTs that (1) disentangle several concepts
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that are influential to a classifier’s decision, resulting in multiple distinct explanations that

uncover blind-spots of alternative approaches providing a single plausible explanation (2)

are coupled to the classifier’s reasoning, due to joint training (3) are realistic (4) preserve

relevant information, (5) and are stable across similar inputs. We validate our approach

on several challenging synthetic and realistic datasets where previous methods fall short

of satisfying desirable criteria for interpretability and show that our method performs

consistently well across all. Finally, we discuss applications of DISSECT for detecting

potential biases of a classifier, investigating its alignment with expert domain knowledge,

and identifying spurious artifacts that impact predictions using simulated experiments.

5.1 Introduction

Many scholars have argued for promises of deep learning explainability from improving

safety to evaluating fairness and beyond [31, 45, 78, 155]. Many efforts in explainability

methods have been working towards providing solutions for this challenging problem. One

way to categorize them is by the medium of explanations, some post hoc techniques focus-

ing on the importance of individual features, such as saliency maps [51, 150, 233, 237],

some on importance of individual examples [120, 122, 128, 260], some on importance

of high-level concepts [123]. There has been active research into the shortcomings of

explainability methods (e.g. [1, 111, 193, 224, 253]). For example, it has been shown that

attention weights can be manipulated without hurting accuracy and result in misleading

interpretations [193], adversarially constructed dissimilar attention distributions can lead

to similar predictions [111], and some existing saliency methods are independent of the

model and the data generating process [1] which renders them unfit for explaining the

relationship between inputs and learned outputs. Scholars have also proposed tests to

determine when attention can be used as an explanation [253].

These methods focus on information that already exist in the data–either by weighting

features or concepts in training examples or by selecting important training examples.
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Figure 5-1: Applying explainability methods to a melanoma classifier in the dermatology
domain. (a) explanation by heatmaps such as [51, 150, 233, 237]. (b) explanation by
segmentation masks such as [76, 213]. Both heatmaps and segmentation masks only
provide partial information. They might hint at what is influential within the sample,
potentially focusing on the lesion area. However, they cannot show what kind of changes
in color, texture, or inflammation could transform the input at hand from benign to
malignant. (c) explanation by sample retrieval such as [228]. A retrieval-based technique
might show input samples of malignant skin lesions that have similarities to a benign
lesion in patient A, but from a different patient B, potentially from another body part or
even a different skin tone. Such examples do not show what this benign lesion in patient
A would have to look like if it were classified as malignant instead. (d) explanation by
counterfactual generation such as [209, 230]. This method depicts how to modify the
input sample to change its class membership. A counterfactual explanation visualizes
what a malignant tumor could look like, in this case, by increasing the diameter of the
lesion. (e) explanation by multiple counterfactual generations such as DISSECT. Multiple
counterfactuals could highlight several different ways that changes in a skin lesion could
reveal its malignancy and overcome some of the blind spots of a single explanation. For
example, they can demonstrate that large lesions, jagged borders, and asymmetrical shapes
lead to melanoma classification. They can even show potential biases of the classifier by
revealing that surgical markings can spuriously lead to melanoma classification.

Guided by recent progress in generative models [27, 101, 124, 131, 147], another family of

explainability methods has emerged that provide explanations by generating new examples

or features [38, 117, 209, 230]. These methods aim to highlight particular aspects or

factors contributing to a classifier’s decision using generated examples or by producing

counterfactuals.

One of the key benefits of counterfactual generation is allowing users to explore

scenarios through what does not and cannot exist in the data, making them an excellent
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tool for making classifier decisions plausible [247]. Using counterfactual generation for

investigating a classifier’s decisions, one can ask: what if this sample were to be classified

as the opposite class, and how would it differ? For the rest of this chapter, I will refer to

these types of questions for investigating a predictor as "what-if" questions 1. Humans

also justify decisions via counterfactuals [3], and children learn through a similar process

[7, 18, 250]. Additionally, in-depth user studies have shown that examples have been the

most preferred means of explanations by users across visual, auditory, and sensor data

domains [115].

To illustrate the added benefits of counterfactual explanations, consider a dermatology

task where an explanation method is used to highlight why a certain sample is classified

as benign/malignant (Fig. 5-1). Explanations through mediums like heatmaps, saliency

maps, or segmentation masks only provide partial information. Such methods might hint

at what is influential within the sample, potentially focusing on the lesion area. However,

they cannot show what kind of changes in color, texture, or inflammation could transform

the input at hand from benign to malignant. Retrieval-based approaches that provide

examples that show a concept are not enough for answering "what-if" questions either. A

retrieval-based technique might show input samples of malignant skin lesions that have

similarities to a benign lesion in patient A, but from a different patient B, potentially from

another body part or even a different skin tone. Such examples do not show what this

benign lesion in patient A would have to look like if it were classified as malignant instead.

On the other hand, counterfactuals depict how to modify the input sample to change its

class membership. A counterfactual explanation visualizes what a malignant tumor could

look like in terms of potential color or texture, or inflammation changes on the skin. Better

yet, multiple counterfactuals could highlight several different ways that changes in a skin

lesion could reveal its malignancy.

Most previous work on generative explainability has focused on providing a single

1Note that this chapter uses this line of questioning only to refer to the predictor-under-test, which is
different from the underlying data generative process. Therefore, causal claims about the real-world data
cannot be derived from this method.
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plausible explanation [209, 230]. However, a single explanation is not enough in many

use-cases (Fig. 5-1). One scenario is recourse generation for decision-making systems.

For example, consider a model deciding on granting loans to applicants. An individual that

has been denied a loan aims to improve their unfavorable outcome. A single counterfactual

explanation might suggest increasing their education. However, the individual might not

be able to afford further investment in their education but may be capable of reducing their

debt or increasing their income. Having multiple counterfactual explanations allows the

user to incorporate their constraints and choose from more than one option to improve their

chances of receiving a loan. Recourse generation has gained significant attention, and the

benefits of multiple explanations have become evident. Several scholars have attempted

to address this issue [46, 171]. Another use case is when explanations serve knowledge

discovery and education. Providing several explanations depicts a more comprehensive

view by showing the different possible ways that a classification outcome could flip instead

of just converging to the most common one. For example, there are several ways that a

benign skin lesion could become malignant. Another example is using explanations as an

auditing tool before deploying a model to check its alignment with domain knowledge.

Multiple distinct explanations can help uncover potential failure points that might be

indistinguishable if merged into a single explanation. For example, consider a model that

is influenced by the meaningful color/texture/size changes for classifying skin lesions as

benign/malignant, but also relies on surgical markings [256] to make its decision. A single

explanation might fail to reveal this flaw resulting from dependence on spurious features,

but multiple distinct explanations shed light on this phenomenon.

Some of the most consistently agreed-upon properties desired for an explainability

method include diversity, compatibility, realism, substitutability, and stability. Diversity

[162] suggests that inputs should be representable with non-overlapping concepts. Compat-

ibility with classifier [230], or classification model consistency [231] means that changing

the explanation should produce the desired outcome from the classifier. Realism or data

consistency [230] suggests that perturbed samples should lie on the data manifold to be
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consistent with actual data. In other words, the generated samples should look realistic

when compared to real samples. Substitutability suggests that explanations should pre-

serve relevant information [209]. This quality has sometimes been referred to as fidelity

[162, 192]. Stability [75, 162, 192] refers to the coherence of explanations for similar

inputs. As we show in this chapter, current counterfactual generation techniques fail to

satisfy these desired properties simultaneously. This call for developing a new method that

can satisfy all of these properties.

In this work, we develop a generation-based explainability method that attempts to

solve the challenges mentioned above. DISSECT generates Concept Traversals (CTs).

We define a CT as a sequence of generated examples with increasing degrees of concepts

that influence a classifier’s decision. CTs are generated by jointly training a generator,

a discriminator, and a CT disentangler, together to generate examples that (1) express

one distinct factor at a time that is influential to a classifier’s decision, (2) are coupled

to the classifier’s reasoning, due to joint training (3) are realistic (4) preserve relevant

information, (5) are stable across similar inputs. We compare DISSECT with several

baselines, some of which have been optimized for disentanglement, some used extensively

for explanation, and some that fall in between. DISSECT is the only technique that

performs well across all the aforementioned dimensions. Other baselines either have a hard

time with influence, lack fidelity, generate poor quality and unrealistic samples, or are not

disentangling properly.We evaluate DISSECT using 3D Shapes [19], CelebA [146],

and a new synthetic dataset inspired by the challenges faced in the dermatology domain

[65]. We show that DISSECT successfully addresses all of these challenges. We also

discuss this work’s applications to detect a classifier’s potential biases using a simulated

experiment.

This chapter makes five main contributions: 1) presents a counterfactual explana-

tion approach that manifests several desirable properties outperforming baselines, 2)

demonstrate applications through experiments showcasing the effectiveness of this ap-

proach for detecting potential biases of a classifier, 3) presents a set of explainability
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baselines inspired by approaches used for generative disentanglement, 4) translates desired

properties commonly referred to in the literature across mediums of explanation into mea-

surable quantities applicable to bench-marking and evaluating counterfactual generation

approaches, 5) releases a new synthetic dataset inspired by the challenges faced in the

dermatology domain. The code for all the models and metrics is publicly available at

https://github.com/asmadotgh/dissect.

5.2 Related Work

We focus on reviewing post hoc explainability methods. One way to categorize them

is by the medium of explanation. While met with criticisms [1, 232], many feature-

based explainability methods exist [51, 150, 237] that assign a weight to each input

feature to indicate their importance in classification. Example-based methods are another

popular category [120, 122, 128, 260] that instead assign importance weights to individual

examples. More recently, concept-based methods have emerged that attribute weights to

concepts, i.e., higher-level representations of features [76, 85, 123] such as "long hair."

Some of these methods have to provide multiple explanations [25, 179].

Our work leverages recent progress in the generative modeling community [81, 126],

where the explanation is presented through several conditional generations [168, 178].

Efforts for the "discovery" of concepts are also related to learning disentangled rep-

resentations [27, 101, 123, 124], which is particularly challenging without additional

supervision [147]. Recent findings suggest that weak supervision in the form of how many

factors of variation have changed [227], using labels for validation [148], or using sparse

labels during training [148] are a few approaches that could make the problem identifiable.

While some techniques like Conditional Subspace VAE (CSVAE) [127] started to look

into conditional disentanglement by incorporating labels, their performance is far from

their unconditional counterparts. Unlike previous work, we include weak supervision via

the posterior probability and gradient of the classifier-under-test to aid discovery.
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Many explainability methods have emerged that use generative models to modify

existing examples or generate new examples [38, 40, 86, 117, 209, 230]. Most of these

efforts use pre-trained generators and generate a new example by moving along the

generator’s embedding. Some aim to generate samples that would flip the classifier’s

decision [40, 117], while others aim to modify particular attribution (e.g., gender) of the

image and observe the classifier’s decision change [38]. While examples generated by

an independently trained generator may look realistic, it might be missing a key piece–

it is not explicitly coupled to the classifier’s inner workings that it is trying to explain.

More recent work addresses these issues by allowing the classifier’s signal such as its

predicted probabilities or gradients to flow through the generator during training [209, 230].

However, most assume that there is only one path that crosses the decision boundary, and

they generate examples along that path. A single explanation would be adequate for simple

classifiers/datasets. However, we argue that many classifiers trained on complex real

datasets encode much more complex rationale that could benefit from decomposing the

path into many paths or concepts.

Our work brings together the best of both worlds: we leverage a counterfactual ex-

planation technique [230] that allows "what-if" questioning and successfully generates

influential high-quality samples. Then, we endow it with qualities of disentanglement

to promote diversity of explanations, by identifying multiple distinct paths/concepts to

influence the classifier’s decision. A sequence of generated examples expresses each

concept called a Concept Traversal (CT). A generator trained while having access to the

classifier’s signal produces these examples.

5.3 Methods

Consider a classifier 𝑓 : 𝑋 → 𝑌 such that 𝑓(𝑥) = 𝑝(𝑦|𝑥) where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . We

want to find 𝐾 concepts that contribute to the decision-making of 𝑓 . Consider a query
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sample 𝑥 ∼ 𝑝𝑑𝑎𝑡𝑎, where 𝑝𝑑𝑎𝑡𝑎 is the data distribution, a desired posterior probability2

𝛼 ∈ {0, 1
𝑁
, . . . , 1}, and a concept index 𝑘 ∈ {1, 2, . . . , 𝐾}. Given 𝑥, 𝛼, and 𝑘, we

want to generate an image, �̄�, by perturbing latent concept 𝑘, such that the posterior

probability 𝑓(�̄�) = 𝛼. Putting it together, the function that generates �̄� is defined as

𝐼(𝑥, 𝛼, 𝑘; 𝑓) : 𝑋 × {0, 1
𝑁
, . . . , 1} × {1, 2, . . . , 𝐾} → 𝑋 , where 𝑓(𝐼(𝑥, 𝛼, 𝑘; 𝑓)) ≈ 𝛼. We

define the 𝑘-th Concept Traversal (CT𝑘) as the series of �̄�’s generated from 𝐼 , with 𝑘-th

concept and an ordered set of 𝛼’s, each of which resulting in a monotonic change in the

𝑓(𝐼(𝑥, 𝛼, 𝑘; 𝑓)).

5.3.1 Baseline I: Multi-modal Explainability through VAE-based Dis-

entanglement

Disentanglement approaches have demonstrated practical success in learning represen-

tations that correspond to factors for variation in data [227], though some gaps between

theory and practice remain [147]. However, the extent to which these techniques can

aid post hoc explainability in conjunction with an external model is not well understood.

Thus, we consider a set of baseline approaches based on VAEs explicitly designed for

disentanglement: 𝛽-VAE [101], Annealed-VAE [20], and DIPVAE [132]. We extend

each of them to incorporate the classifier’s signal during their training processes for a fair

comparison with DISSECT. Intuitively speaking, this encourages the generative model to

learn latent dimensions that could influence the classifier, i.e., learning Influential CTs.

More formally, consider a vanilla VAE that has an encoder 𝑒𝜃 with parameters 𝜃, a

decoder 𝑑𝜑 with parameters 𝜑, and the 𝑀 -dimensional latent code 𝑧 with prior distribution

𝑝(𝑧). Recall that 𝑥 denotes the input sample. The objective of a VAE is to minimize the

loss:

ℒvanilla VAE
𝜃,𝜑 = −E𝑧∼𝑒𝜃(𝑧|𝑥)[log 𝑑𝜑(𝑥|𝑧)] + KL(𝑒𝜃(𝑧|𝑥)||𝑝(𝑧)).

We introduce an additional loss term for incorporating the black-box classifier’s signal:

2Following [230], we discretize the interval [0, 1] into 𝑁 + 1 steps with 1
𝑁 increments.
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1/𝐾
∑︀𝐾

𝑘=1 𝜕𝑓(𝑥)/𝜕𝑧𝑘. We impose this only for the first 𝐾 dimensions in the latent space3,

in other words, the number of desired CTs, 𝐾 ≤ 𝑀 . Minimizing this term provides CT𝑘s,

𝑘 ∈ {1, 2, . . . , 𝐾}, with negative 𝜕𝑓(𝑥)/𝜕𝑧𝑘, with a high |𝜕𝑓(𝑥)/𝜕𝑧𝑘|. The final loss is:

ℒ𝜃,𝜑 = ℒvanilla VAE
𝜃,𝜑 + 𝜆 *

∑︀𝐾
𝑘=1 𝜕𝑓(𝑥)/𝜕𝑧𝑘

𝐾
,

where 𝜆 is a hyper-parameter. We apply this modification to the four aforementioned

VAE-based approaches and refer to them with a -mod postfix, e.g., 𝛽-VAE-mod.

5.3.2 Baseline II: Multi-modal Explainability through Conditional

Subspace VAE

Another relevant area of work is conditional generation. In particular, Conditional subspace

VAE (CSVAE) is a method aiming to solve unsupervised learning of features associated

with a specific label using a low-dimensional latent subspace that can be independently ma-

nipulated [127]. CSVAE partitions the latent space into two parts: 𝑤 learns representations

correlated with the label, and 𝑧 covers the remaining characteristics for data generation. An

assumption of independence between 𝑧 and 𝑤 is made. To explicitly enforce independence

in the learned model, we minimize the mutual information between 𝑌 and 𝑍. CSVAE has

proven successful in providing counterfactual scenarios to reverse unfavorable decisions

of an algorithm, also known as algorithmic recourse [46]. To adjust CSVAE to explain the

decision-making of an external classifier 𝑓 , we treat the predictions of the classifier as the

label of interest.

More formally, the generative model can be summarized as:

𝑤|𝑦 ∼ 𝑁(𝜇𝑦, 𝜎
2
𝑦.𝐼), 𝑦 ∼ 𝐵𝑒𝑟𝑛(𝑝),

𝑥|𝑤, 𝑧 ∼ 𝑁(𝑑𝜑𝜇(𝑤, 𝑧), 𝜎2
𝜖 .𝐼), 𝑧 ∼ 𝑁(0, 𝜎2

𝑧 .𝐼)

3Without loss of generality, the additional term can be applied to the first 𝐾 dimensions, and there is no
need to consider

(︀
𝐾
𝑀

)︀
potential selections.
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Conducting inference leads to the following objective function:

𝑀1 = E𝐷(𝑥,𝑦)[−E𝑞𝜑(𝑧,𝑤|𝑥,𝑦)[log 𝑝𝜃(𝑥|𝑤, 𝑧)]+KL(𝑞𝜑(𝑤|𝑥, 𝑦)||𝑝𝛾(𝑤|𝑦))+KL(𝑞𝜑(𝑧|𝑥, 𝑦)||𝑝(𝑧))−log 𝑝(𝑦)]

𝑀2 =E𝑞𝜑(𝑧|𝑥)𝐷(𝑥)[

∫︁
𝑌
𝑞𝛿(𝑦|𝑧) log 𝑞𝛿(𝑦|𝑧) 𝑑𝑦]

𝑀3 =E𝑞(𝑧|𝑥)𝐷(𝑥,𝑦)[𝑞𝛿(𝑦|𝑧)]

min
𝜃,𝜑,𝛾

𝛽1𝑀1 + 𝛽2𝑀2; max
𝛿

𝛽3𝑀3

5.3.3 Baseline III: Multi-modal Explainability through Progressive

Exaggeration

Explanation by Progressive Exaggeration (EPE) [230] is a recent successful generative

approach that learns to generate one series of counterfactual and realistic samples that

change the prediction of 𝑓 , given data and the classifier’s signal. It is particularly relevant

to our work as it explicitly optimizes Influence and Realism. EPE is a type of Generative

Adversarial Network (GAN) [81] consisting of a discriminator (𝐷) and a generator (𝐺)

that is based on Projection GAN [168]. It incorporates the amount of desired perturbation

𝛼 on the outcome of 𝑓 as:

ℒcGAN(𝐷) = −E𝑥∼𝑝𝑑𝑎𝑡𝑎 [min(0,−1 + 𝐷(𝑥, 0)] − E𝑥∼𝑝𝑑𝑎𝑡𝑎 [min(0,−1 −𝐷(𝐺(𝑥, 𝛼), 𝛼))]

(5.1)

ℒcGAN(𝐺) = −E𝑥∼𝑝𝑑𝑎𝑡𝑎 [𝐷(𝐺(𝑥, 𝛼), 𝛼)] (5.2)

A Kullback–Leibler divergence (KL) term in the objective function between the desired

perturbation (𝛼) and the achieved one (𝑓(𝐺(𝑥, 𝛼))) promotes Importance [230]:

ℒ𝑓 (𝐷,𝐺) = 𝑟(𝐷,𝐺(𝑥, 𝛼)) + KL(𝛼|𝑓(𝐺(𝑥, 𝛼))), (5.3)
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where the first term is the likelihood ratio defined in projection GAN [81], and [230] uses

an ordinal-regression parameterization of it.

A reconstruction loss and a cycle loss promote self-consistency in the model, meaning

that applying a reverse perturbation or no perturbation should reconstruct the query sample:

ℒrec(𝐺) = ||𝑥−𝐺(𝑥, 𝑓(𝑥))||1 (5.4)

ℒcyc(𝐺) = ||𝑥−𝐺(𝐺(𝑥, 𝛼), 𝑓(𝑥))||1. (5.5)

Thus, the overall objective function of EPE is the following:

min
𝐺

max
𝐷

𝜆cGANℒcGAN(𝐷,𝐺) + 𝜆𝑓ℒ𝑓 (𝐷,𝐺) + 𝜆recℒrec(𝐺) + 𝜆recℒcyc(𝐺), (5.6)

where 𝜆cGAN, 𝜆𝑓 , and 𝜆rec are the hyper-parameters.

Note that EPE only finds one pathway to switch the classifier’s outcome. We argue

that classifiers learned from challenging and realistic datasets will have complex reasoning

pathways that could enhance model explainability if revealed. Decomposing this com-

plexity is needed to make reasoning comprehensible for humans. We compare DISSECT

to a more powerful baseline, an EPE-variant, EPE-mod. EPE-mod learns multiple path-

ways by making the generator conditional on another variable: the CT dimension. More

formally, EPE-mod updates 𝐺(·, ·) to 𝐺(·, ·, 𝑘) in Eq. (5.1)-(5.5), while Eq. (5.6) remains

unchanged.

5.3.4 Our Method: Enforcing Distinctness of Discovered Concepts

We build our proposed method on EPE-mod and further promote distinctness across CTs

by adding a disentangler network, 𝑅. The disentangler is a classifier with K classes. Given

a pair of < 𝑥, 𝑥′ > images, 𝑅 tries to predict which CT𝑘;𝑘∈{1,...,𝐾} has perturbed query 𝑥

to produce 𝑥′. Note that 𝑅 can return close to 0 probability for all classes if 𝑥′ is just a

reconstruction of 𝑥, indicating no tweaked dimensions. The disentangler also penalizes
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the generator if any CTs use similar pathways to cross the decision boundary. See the

appendix for schematics of our method.

To formalize this, let:

�̂�𝑘 = 𝐺(𝑥, 𝑓(𝑥), 𝑘)

�̄�𝑘 = 𝐺(𝑥, 𝛼, 𝑘)

�̃�𝑘 = 𝐺(�̄�𝑘, 𝑓(𝑥), 𝑘).

Note that �̂�𝑘 and �̃�𝑘 are reconstructions of 𝑥 while �̄�𝑘 is perturbed to change the

classifier output from 𝑓(𝑥) to 𝛼. Therefore, 𝑥, �̄�𝑘 and �̃�𝑘 form a cycle, and 𝑘 represents

CT𝑘. 𝑅(., .) is the predicted probabilities of the perturbed concept given a pair of examples,

which is a vector of size 𝐾, where each element is a value in [0, 1]. We define the following

cross entropy loss that is a function of both 𝑅 and 𝐺:

ℒ𝑟(𝐺,𝑅) = 𝐶𝐸(0, 𝑅(𝑥, �̂�𝑘)) + 𝐶𝐸(0, 𝑅(𝑥, �̃�𝑘)) + 𝐶𝐸(𝑒𝑘, 𝑅(𝑥, �̄�𝑘)) + 𝐶𝐸(𝑒𝑘, 𝑅(�̄�𝑘, �̃�𝑘))

= −E𝑥∼𝑝𝑑𝑎𝑡𝑎

𝐾∑︁
𝑘=1

[𝑒𝑘𝑙𝑜𝑔𝑅(𝑥, �̄�𝑘) + 𝑒𝑘𝑙𝑜𝑔𝑅(�̄�𝑘, �̃�𝑘)]

(5.7)

Here, 0 refers to a vector of size 𝐾 with all zeros, and 𝑒𝑘 refers to a one-hot vector

of size 𝐾 where the 𝑘-th element is one and the remaining elements are zero. This term

enforces 𝑅 to identify no change when receiving reconstructions of the same image as input

and utilizes the cycle and promotes determining the correct dimension when a non-zero

change has happened, either increasing or decreasing the outcome of 𝑓 . In summary, the

overall objective function of our method is:

min
𝐺,𝑅

max
𝐷

[𝜆cGANℒcGAN(𝐷,𝐺) + 𝜆𝑓ℒ𝑓 (𝐷,𝐺) + 𝜆recℒrec(𝐺) + 𝜆recℒcyc(𝐺)

+ 𝜆𝑟ℒ𝑟(𝐺,𝑅)]

(5.8)

For this adversarial min-max optimization, we use the Adam optimizer [125].
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5.4 Experiments

We evaluate DISSECT on several datasets (e.g. [19, 146]) and experimental designs.

5.4.1 Datasets

3D Shapes

We first use 3D Shapes [19], a synthetic dataset composed of 480K 3D shapes procedu-

rally generated from 6 ground-truth factors of variation. These factors are floor hue, wall

hue, object hue, scale, shape, and orientation. Note that this dataset is purely for validation

and demonstration purposes due to the controllability of all these factors. We also include

datasets inspired by real-world problems (Section 5.4.1) as well as real datasets (Section

5.4.1).

I

II

III

IV

V

VI

Benign

Asymmetrical

Asymmetrical with surgical markings

Jagged borders

Uneven colors

Larger than 0.25"

Figure 5-2: Illustration of SynthDerm dataset that we algorithmically generated. Fitz-
patrick scale of skin classification based on melanin density and corresponding samples
representing different characteristics in the dataset are visualized.
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SynthDerm

Second, we create a new dataset, SynthDerm (Figure 5-2). Real-world characteristics of

melanoma skin lesions in dermatology settings inspire the generation of this dataset [242].

These characteristics include whether the lesion is asymmetrical, its border is irregular

or jagged, is unevenly colored, has a diameter more than 0.25 inches, or is evolving in

size, shape, or color over time. These qualities are usually referred to as the ABCDE of

melanoma [202]. We generate SynthDerm algorithmically by varying several factors:

skin tone, lesion shape, lesion size, lesion location (vertical and horizontal), and whether

there are surgical markings present. We randomly assign one of the following to the

lesion shape: round, asymmetrical, with jagged borders, or multi-colored (two different

shades of colors overlaid with salt-and-pepper noise). For skin tone values, we simulate

Fitzpatrick ratings [54]. Fitzpatrick scale is a commonly used approach to classify the

skin by its reaction to sunlight exposure modulated by the density of melanin pigments

in the skin. This rating has six values, where 1 represents skin that always burns (lowest

melanin) and 6 represents skin that never burns in sunlight (highest melanin). For our

synthetic generation, we consider six base skin tones that similarly resemble different

amounts of melanin. We also add a small amount of random noise to the base color to add

further variety. Overall, SynthDerm includes more than 2,600 images of size 64x64. We

have made this dataset publicly available at https://affect.media.mit.edu/

dissect/synthderm.

CelebA

We also include the CelebA dataset [146], where the attributes are nuanced and not truly

independent. This dataset contains images of celebrities, is realistic, and closely resembles

real-world settings. CelebA includes more than 200K celebrity images with 40 annotated

face attributes, such as smiling, hair color, bangs, and glasses.
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5.4.2 Evaluation Strategy

To evaluate the quality of the discovered CTs, we consider several measures that formalize

Importance [230, 231], Realism [230], Distinctness [162], Substitutability [162, 192, 199,

209], and Stability [75, 162, 192], which commonly appear as desired qualities in the

explainability literature.

Importance

Explanations should produce the desired outcome from the black-box classifier 𝑓 . Pre-

vious work has referred to this quality using different names, such as importance [76],

compatibility with classifier [230], and classification model consistency [231].

While most previous methods have relied on visual inspection, we introduce a quan-

titative metric to measure the gradual increase of the target class’s posterior probability

through a CT. Notably, we compute the correlation between 𝛼 and 𝑓(𝐼(𝑥, 𝛼, 𝑘; 𝑓)) intro-

duced in Sec. 5.3. For brevity, we refer to 𝑓(𝐼(𝑥, 𝛼, 𝑘; 𝑓)) as 𝑓(�̄�) in the remainder of

the chapter. We also report the mean-squared error and the Kullback–Leibler divergence

between 𝛼 and 𝑓(�̄�).

We also calculate an empirical proxy for the generalization of black-box classifier 𝑓

to counterfactual explanations. Specifically, we replace the test set of real images with

their DISSECT-generated counterfactual explanations and quantify the performance of the

pre-trained black-box classifier 𝑓 on the DISSECT-generated test set. Better generalization

to the counterfactual samples suggests that they are compatible with 𝑓 and lie on the

correct side of the classifier’s boundary.

Realism

We need the generated samples that form a CT to look realistic to enable users/humans to

identify concepts they represent. It means the counterfactual explanations should lie on

the data manifold. This quality has been referred to as realism or data consistency [230].
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Inspired by [48], we train a post hoc classifier that predicts if a given sample is real or

generated. Although its objective is identical to that of the discriminator in our architecture,

it is essential to do this step post hoc and independent from the training procedure. That is

because relying on the discriminator’s accuracy in an adversarial training framework can

be misleading [48].

Distinctness

A desirable quality for explanations is to represent inputs with non-overlapping concepts,

often referred to as diversity [162]. Others have suggested similar properties such as

coherency, meaning examples of a concept should be similar to each other but different

from examples of other concepts [76]. To quantify this quality in a way applicable to

counterfactual generation, we introduce a distinctness metric. We also include metrics

commonly used in disentanglement literature.

To measure distinctness, we report the performance of a secondary classifier that

distinguishes between CTs. Mainly, we train a classifier post hoc that given a query

image 𝑥 and a generated image 𝑥′ and 𝐾 number of CTs, predicts one of the following:

(1) 𝑥′ is the reconstruction of 𝑥, (2) 𝑥′ is a perturbation of 𝑥 and CT𝑘 has produced it,

𝑘 ∈ {1, 2, . . . , 𝐾}. This classifier is agnostic to our model and only uses its pair of input

images.

Substitutability

The representation of a sample in terms of concepts should preserve relevant information

[162, 192]. Previous work has formalized this quality for counterfactual generation

contexts through a proxy called substitutability [209] . Substitutability measures an

external classifier’s performance on real data when it is trained using only synthetic

images.4 Higher performance when tested on real data suggests that explanations have

4This metric has been used in other contexts outside of explainability and has been called Classification
Accuracy Score (CAS) [199] CAS is more broadly applicable than Frechet Inception Distance [100] and
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𝑓(𝑥) 	= 0.00 𝑓(𝑥)	= 1.00

Query EPE
𝑓(𝑥)	= 1.00

EPE-mod
𝑓(𝑥)	= 1.00

DISSECT

𝑓(𝑥)	= 1.00𝑓(𝑥)	= 1.00
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N/A

𝐶𝑇*,	,-*..

𝐶𝑇/,	,-*..

𝐶𝑇/,	,-*.. N/A

Query EPE EPE-mod DISSECT

Figure 5-3: Qualitative results on 3D Shapes. We observe that EPE and EPE-mod
converge to finding the same single concept, despite EPE-mod having the ability to express
multiple pathways to switch the classifier outcome from False to True. However, DISSECT
is capable of discovering the two distinct ground-truth concepts: CT1 flips the floor color
to cyan and CT2 flips the shape color to red.

retained relevant information and are of high quality.

Stability

Explanations should be coherent for similar inputs, a quality known as stability [75, 162,

192]. To quantify stability in the context of counterfactual explanations, we augment the

test set by adding random noise to each sample 𝑥 and produce several copies �̂�𝑖 where

𝑖 ∈ {1, .., 𝑆}; Here, 𝑆 is the number of random augmentations. Then, we generate coun-

terfactual explanations �̄� and ¯̂𝑥𝑖, respectively. We calculate the mean-squared difference

between counterfactual images �̄� and ¯̂𝑥𝑖 and the resulting Jensen Shannon distance between

the predicted probabilities 𝑓(�̄�) and 𝑓(¯̂𝑥𝑖).

5.4.3 Case Study I: Validating the Qualities of Concept Traversals

Considering 3D Shapes [19], we define an image as "colored correctly" if the shape hue

is red or the floor hue is cyan. We train a classifier to detect whether a sample image is

"colored correctly" or not. In this synthetic experiment, only these two independent factors

contribute to the decision of this classifier.

Inception Score [208] that are only useful for evaluating GAN models. Furthermore, CAS can reveal
information that none of these inception scores successfully capture [199].
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Given a not "colored correctly" query, we would like to recover a CT related to the

shape color and another CT associated with the floor color–two different pathways that

lead to switching the classifier outcome for that sample.5

Table 5.1 summarizes the quantitative results on 3D Shapes. Most VAE-variants

perform poorly in terms of Importance, CSVAE performs slightly better, and EPE, EPE-

mod, and DISSECT perform best. Our results suggest that DISSECT performs similarly

to EPE that has been geared explicitly toward exhibiting Importance and its extension,

EPE-mod. Additionally, DISSECT still keeps Realism intact. Also, it notably improves

the Distinctness of CTs compared to relevant baselines.

Figure 5-3 shows the qualitative results for EPE, EPE-mod, and DISSECT.6 Our results

reveal that EPE converges to finding only one of these concepts. Similarly, both CTs

generated by EPE-mod converge to finding the same concept, despite being given the

capability to explore two pathways to switch the classifier outcome. However, DISSECT is

capable of recovering the two separate concepts through its two generated CTs. Similarly,

to flip the class of a "colored correctly" query to the opposite class, EPE-mod finds one

possible transformation rather than two distinct ones that DISSECT finds. For brevity, only

two sample queries are visualized; however, the observation is consistent across samples.

5.4.4 Case Study II: Investigating Alignment with Expert Domain

Knowledge and Identifying Spurious Artifacts

A "high performance" model could learn to make its decisions based on irrelevant features

that only happen to correlate with the desired outcome, known as label leakage [254]. One

of the applications of DISSECT is to uncover such spurious concepts and allow probing a

black-box classifier. Motivated by real-world examples that revealed classifier dependency
5In this scenario, these two ground-truth concepts do not directly apply to switching the classifier outcome

from True to False.For example, if an image has a red shape and a cyan floor, both of these colors need to be
changed to switch the classification outcome. We still observe that applying DISSECT to such cases results
in CTs that change different combinations of colors. However, the baseline methods converge to the same
CT. See appendix for more details.

6This figure only includes methods with minimally acceptable Realism scores.
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on surgical markings in identifying melanoma [256], we design this experiment.

Given the synthetic nature of SynthDerm and how it has been designed based on

real-world characteristics of melanoma [202, 242], each sample has a deterministic label

of melanoma or benign. If the image is asymmetrical, has jagged borders, has different

colors represented by salt-and-pepper noise, or has a large diameter (i.e., does not fit in a

40x40 square), the sample is melanoma. Otherwise, the image represents the benign class.

Similar to in-situ dermatology images, melanoma samples have surgical markings more

frequently than benign samples. We train a classifier to detect whether a sample image is

melanoma or a benign lesion.

Given a benign query, we would like to produce counterfactual explanations that depict

how to modify the input sample to change its class membership. We want DISSECT to

recover CTs that disentangle meaningful characteristics of melanoma identification in

terms of color, texture, or shape [202], and identify potential spurious artifacts that impact

the classifier’s predictions.

Table 5.2 summarizes the quantitative results on SynthDerm. Our method per-

forms consistently well across all the metrics, significantly boosting Distinctness and

Substitutability scores and making meaningful improvements on Importance scores. Our

approach has higher performance compared to EPE-mod and EPE baselines and substan-

tially improves upon CSVAE. Our method’s high Distinctness and Substitutability scores

show that DISSECT covers the landscape of potential concepts very well and retains the

variety seen in real images strongly better than all the other baselines.

Figure 5-4 illustrates a few examples to showcase DISSECT’s improvements over the

strongest baseline, EPE-mod. We observe that EPE-mod converges to finding a single con-

cept that only vaguely represents meaningful ground-truth concepts. However, DISSECT

successfully finds concepts describing asymmetrical shapes, jagged borders, and uneven

colors that align with ABCDE of melanoma [202]. DISSECT also identifies surgical

markings as a concept that impacts the classifier’s decisions. Overall, the qualitative results

show that DISSECT uncovers several critical blind spots of the baseline techniques.
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Figure 5-4: Qualitative results on SynthDerm comparing DISSECT with the strongest
baseline, EPE-mod. We illustrate a few queries with different Fitzpatrick ratings [54] and
visualize two of the most prominent concepts for each technique. We observe that EPE-mod
converges to finding a single concept that only vaguely represents meaningful ground-
truth concepts. However, DISSECT successfully finds concepts describing asymmetrical
shapes, jagged borders, and uneven colors that align with the ABCDE of melanoma
[202]. DISSECT also identifies concepts for surgical markings that impact the classifier’s
decisions. Basing melanoma classification on such spurious concepts is incongruent with
expert domain knowledge. Successfully surfacing that the model has learned these false
associations could inform actions to improve the model-under-test.

5.4.5 Case Study III: Identifying Biases

Another potential use case of DISSECT is to identify biases that might need to be rectified.

Since our approach does not depend on predefined user concepts, it may help discover

biases that were not identified beforehand. We design a simulated experiment to test

DISSECT in such a setting. We sub-sample CelebA to create a training dataset such

that smiling correlates with "blond hair" and "bangs" attributes. In particular, positive

samples either have blond hair or have bangs, and negative examples are all dark-haired

and do not have bangs. We use this dataset to train a purposefully biased classifier. We

employ DISSECT to generate two CTs. Figure 5-5 shows the qualitative results, which

depict that DISSECT discovers the two biases, which other techniques fail to do. Table 5.3

summarizes the quantitative results that replicate our finding from Table 5.1 in Sec. 5.4.3

and Table 5.2 in Sec. 5.4.4 in a real-world dataset, confirming that DISSECT outperforms
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Figure 5-5: Qualitative results on CelebA. A biased classifier has been trained to predict
smile probability, where the training dataset has been sub-sampled such that smiling co-
occurs only with "bangs" and "blond hair" attributes. EPE does not support multiple CTs.
We observe that EPE-mod converges to finding the same concept, despite having the ability
to express various pathways to change 𝑓(�̄�) through CT1 and CT2. However, DISSECT
discovers distinct pathways: CT1 mainly changes hair color to blond, and CT2 does not
alter hair color but focuses more on hairstyle and tries to add bangs. Thus, DISSECT
identifies two otherwise hidden biases.

all the other baselines in Distinctness without negatively impacting Importance or Realism.
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5.5 Supplementary Materials

5.5.1 DISSECT Details

See Figure 5-6 for a detailed visualization of the components of our method or Figure 5-7

for a simplified version.

Real/Fake

Figure 5-6: Illustration of DISSECT. Orange, Green, and Blue show elements related to
the discriminator, generator, and CT disentangler, respectively.

5.5.2 Development of Modified VAE Baselines

To promote discovering Important CTs, we introduced ℒaux =
∑︀𝐾

𝑑=1 𝜕𝑓(𝑥)/𝜕𝑧𝑑
𝐾

, which

incorporated the directional derivative of 𝑓 with respect to the latent dimensions of interest

into the loss function of VAE. Despite experimentation with many variants of ℒaux, we

observed two common themes.

First, a monotonic increase of 𝑓(�̄�) through traversing one latent dimension and

keeping the rest static was hardly achieved. Second, while the purpose of ℒaux was to
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Discriminator

Real or 
Fake?

CT 
Dimension?

CT 
dimension

Generator CT 
Disentangler

𝛼

CT Dimension 1 CT Dimension 2

Figure 5-7: Simplified illustration of DISSECT. Orange, Green, and Blue show elements
related to the discriminator, generator, and CT disentangler, respectively.

promote exerting Importance only in the first 𝐾 dimensions of the latent space, 𝜕𝑓(𝑥)/𝜕𝑧𝑑

for 𝑑 ∈ {𝐾 + 1, 𝐾 + 2, · · · ,𝑀} were impacted similarly. Having strongly correlated

dimensions is a failure in achieving the very goal of disentanglement approaches. Table 5.4

summarizes a subset of the variants of ℒaux studied.

Table 5.4: Summary of a subset of ℒaux iterations. The development goal is to make the
first 𝐾 dimensions of the latent space Important. In some iterations, we encouraged the
remaining 𝑀 −𝐾 dimensions not to be Important to reduce potential correlation across
latent dimensions.

ℒaux

1
∑︀𝐾

𝑘=1 𝜕𝑓(𝑥)/𝜕𝑧𝑘
𝐾

2
∑︀𝐾

𝑘=1 𝜕𝑓(𝑥)/𝜕𝑧𝑘
𝐾

+
∑︀𝑀

𝑑=𝐾+1 |𝜕𝑓(𝑥)/𝜕𝑧𝑑|
𝑀−𝐾

3
∑︀𝐾

𝑘=1 𝜕𝑓(𝑥)/𝜕𝑧𝑘
𝐾

+
∑︀𝑀

𝑑=𝐾+1[𝜕𝑓(𝑥)/𝜕𝑧𝑑]
2

𝑀−𝐾

4
∑︀𝑀

𝑑=𝐾+1 |𝜕𝑓(𝑥)/𝜕𝑧𝑑|
𝑀−𝐾

5
∑︀𝑀

𝑑=𝐾+1[𝜕𝑓(𝑥)/𝜕𝑧𝑑]
2

𝑀−𝐾

6
∑︀

𝑘,𝑑 |𝜕𝑓(𝑥)/𝜕𝑧𝑑|/|𝜕𝑓(𝑥)/𝜕𝑧𝑘|
𝐾*(𝑀−𝐾)

where 𝑘 ∈ {1, 2, · · · , 𝐾}, 𝑑 ∈ {𝐾 + 1, 𝐾 + 2, · · · ,𝑀}
7

∑︀
𝑘,𝑑 𝑙𝑜𝑔(|𝜕𝑓(𝑥)/𝜕𝑧𝑑|/|𝜕𝑓(𝑥)/𝜕𝑧𝑘|)

𝐾*(𝑀−𝐾)
where 𝑘 ∈ {1, 2, · · · , 𝐾}, 𝑑 ∈ {𝐾 + 1, 𝐾 + 2, · · · ,𝑀}
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5.5.3 Evaluation Metrics Details

Following [230], we conduct a more granular analysis to investigate if DISSECT works

similarly across different queries, e.g., when flipping classification outcome from "True"

to "False" or the other way around. We plot 𝛼 vs. 𝑓(�̄�) for query samples with 𝑓(𝑥) < 0.5

and 𝑓(𝑥) ≥ 0.5 separately.

The VAE-based baselines support continuous values for latent dimensions 𝑧𝑘. Also,

we can directly sample latent code values and produce CT𝑘 by keeping 𝑧𝑗 (𝑗 ̸= 𝑘) constant

and monotonically increasing 𝑧𝑘 values. However, to calculate the evaluation metrics

comparably to EPE, EPE-mod, and DISSECT, we do the following: We encode each query

sample using the probabilistic encoder. We set 𝑧𝑗 = 𝜇𝑗 , 𝑗 ̸= 𝑘 where 𝜇𝑗 is the mean of the

fitted Gaussian distribution for 𝑧𝑗 . For dimension 𝑘, we produce 𝑁 + 1 linearly spaced

values between 𝜇𝑝 ± 2 * 𝜎𝑝, where 𝜇𝑝 and 𝜎𝑝 are the mean and standard deviation of the

prior normal distribution, in our case 0.0 and 1.0 respectively. Note that these different

values for 𝑧𝑘 map out to 𝛼, 𝛼 ∈ {0, 1
𝑁
, · · · , 1} in EPE, EPE-mod, and DISSECT models.

After this step, calculating all the metrics related to Importance, Realism, and Distinctness

is identical across all the models.

5.5.4 Experiment Setup and Hyper-parameter Tuning Details

We seeded the model’s parameters from [230] based on the reported values in their

accompanying open-sourced repository7. We used the same parameters for 3D Shapes,

except for the number of bins, 𝑁 , used for ordinal regression transformation of the

classifier’s posterior probability. The largest number of bins that resulted in non-zero

samples per bin, 3, was selected. We kept all the parameters shared between EPE, EPE-

mod, and DISSECT the same.

Given the experiments’ design, we fixed the number of dimensions 𝐾 in DISSECT and

EPE-mod to 2. We experimented with a few values for 𝜆𝑟, 1, 10, 20, 50. Based on manual

7https://github.com/batmanlab/Explanation_by_Progressive_Exaggeration
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inspection after 30k training batches, 𝜆𝑟 was selected. Factors considered for selection

included inspecting the perceived quality of generated samples and the learning curves of

ℒcGAN(𝐷), ℒcGAN(𝐺), ℒcyc(𝐺), ℒrec(𝐺), and ℒ𝑟(𝐺,𝑅).

For evaluation, we used a hold-out set including 10K samples. For post hoc evaluation

classifiers predicting Distinctness and Realism, 75% of the samples were used for training,

and the results were reported on the remaining 25%. See Table 5.5 for the summary of the

hyper-parameter values.

Table 5.5: Summary of hyper-parameter values. Discriminator optimization happens once
every 𝐷 steps. Similarly, generator optimization happens once every 𝐺 steps. 𝜆𝑟 is specific
to DISSECT, and 𝐾 is specific to EPE-mod and DISSECT. All the remaining parameters
are shared across EPE, EPE-mod, and DISSECT. Note that samples used for evaluation
are not included in the training process.

Preprocessing Training Evaluation Metrics

𝑁
max

samples
per bin

𝜆𝑐𝐺𝐴𝑁 𝜆𝑟𝑒𝑐 𝜆𝑓
𝐷

steps
𝐺

steps
batch
size epochs 𝐾 𝜆𝑟

max
# samples

batch
size epochs

hold-out
test
ratio

3D Shapes 3 5,000 1 100 1 1 5 32 300 2 10 10,000 32 10 0.25
SynthDerm 2 1,350 2 100 1 5 1 32 300 5 2 10,000 8 10 0.25
CelebA 10 5,000 1 100 1 1 5 32 300 2 10 10,000 32 10 0.25

5.5.5 Additional Qualitative Results for Case Study I

Recall that considering 3D Shapes, we define an image as "colored correctly" if the

shape hue is red or the floor hue is cyan. Given a not "colored correctly" query, we recover

a CT related to the shape color and another CT associated with the floor color–two different

pathways leading to switching the classifier outcome for that sample. See Figure 5-8 for

additional qualitative examples where classification outcome is flipped from False to True.

However, these two ground-truth concepts do not directly apply to switching the

classifier outcome from True to False in this scenario. For example, if an image has a

red shape and a cyan floor, both colors need to be changed to switch the classification

outcome. As shown in Figure 5-9, we still observe that applying DISSECT to such cases

results in two discovered CTs that change different combinations of colors while EPE-mod

converges to the same CT.
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Figure 5-8: Qualitative results on 3D Shapes when flipping classification outcome from
"False" to "True." We observe that EPE-mod converges to finding the same concept, despite
having the ability to express multiple pathways to switch the classifier outcome. However,
DISSECT can discover the two Distinct ground-truth concepts: 𝐶𝑇1 flips the floor color to
cyan, and 𝐶𝑇2 converts the shape color to red.
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Figure 5-9: Qualitative results on 3D Shapes when flipping classification outcome from
"True" to "False." We observe that EPE-mod converges to finding the same concept, despite
having the ability to express multiple pathways to switch the classifier outcome. However,
DISSECT is capable of discovering Distinct paths to do so. Left: When the input query
has a red shape, but the floor color is not cyan, CT1 flips the shape color to orange and CT2

flips it to violet. Middle: When the input query has a cyan floor, but the shape color is not
red, CT1 flips the floor color to lime, and CT2 converts it to magenta. Right: When the
input query has a red shape and cyan floor, CT1 changes the shape color to dark orange
and floor color to lime, and CT2 flips the shape color to violet and floor color to magenta.
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Figure 5-10: Qualitative results on CelebA. A biased classifier has been trained to predict
smile probability, where the training dataset has been sub-sampled such that smiling co-
occurs only with "bangs" and "blond hair" attributes. EPE does not support multiple CTs.
We observe that EPE-mod converges to finding the same concept, despite having the ability
to express several pathways to change 𝑓(�̄�) through CT1 and CT2. However, DISSECT
can discover Distinct routes: CT1 mainly changes hair color to blond, and CT2 does not
alter hair color but focuses more on hairstyle and tries to add bangs. Thus it identifies two
otherwise hidden biases.

5.5.6 Additional Quantitative Results for Case Study I

Figure 5-11 depicts more details regarding CTs’ Importance across different groups of

samples for 3D Shapes experiments.
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𝑓(𝑥)(Acquired) vs. 𝛼 (Desired) Classifier Posterior Probability

𝛼

𝑓(
𝑥)

Query Class: All Query Class: True Query Class: False

𝛼 𝛼

Figure 5-11: Acquired vs. desired classifier posterior probability for generated samples
that constitute a CT on 3D Shapes over 10K queries in total. The ideal would be a line
of slope one. Error bars represent 95% confidence intervals. We observe that DISSECT
performs similarly to EPE that has been particularly geared toward exhibiting Influence,
and its extension, EPE-mod. VAE based methods perform poorly in terms of Influence.
CSVAE performs significantly better than other VAE baselines but still works much worse
than EPE, EPE-mod, and DISSECT. There is a significant correlation between acquired
and desired posterior probabilities of generated samples for DISSECT (r=0.82, p<.0001),
EPE-mod (r=0.87, p<.0001), EPE (r=0.81, p<.0001), and CSVAE (r=0.32, p<.0001). In
other VAE baselines, there is very low or no correlation between acquired and desired
probabilities: DIPVAE (r=0.14, p<.0001), VAE (r=0.07, p<.0001), 𝛽-VAE-mode (r=-0.01,
p>.1) and Annealed-VAE-mod (r=-0.01, p>.1).

5.5.7 Additional Quantitative Results for Case Study II

Figure 5-12 provides more granular information about Importance scores that further

confirms our qualitative results for SynthDerm experiments.

5.5.8 Additional Quantitative Results for Case Study III

Figure 5-13 provides further details regarding Importance scores on a more granular scale

for celebA dataset.
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𝑓(𝑥)(Acquired) vs. 𝛼 (Desired) Classifier Posterior Probability
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Figure 5-12: Acquired vs. desired classifier posterior probability for generated samples
that constitute a CT on SynthDerm over 10K queries in total. The ideal would be a line
of slope one. Error bars represent 95% confidence intervals. We observe that DISSECT
performs similarly to EPE that has been particularly geared toward exhibiting Influence,
and it potentially outperforms EPE-mod. Although CSVAE produces examples with
acquired posterior probabilities correlated with the desired values (r=0.25, p<.0001), it
performs significantly worse than EPE (r=0.87, p<.0001), EPE-mod (r=0.81, p<.0001),
and DISSECT (r=0.92, p<.0001).

5.5.9 Additional Qualitative Results for Case Study III

Recall the biased CelebA experiment where smiling correlates with "blond hair" and

"bangs" attributes. Figure 5-10 shows additional qualitative samples, suggesting that

DISSECT can recover and separate the aforementioned concepts, which other techniques

fail to do.

5.6 Conclusions

Unlike previous work on generative explainability that cannot disentangle important

concepts effectively, produce poor quality or unrealistic examples, or fail to retain relevant

information, we proposed a novel approach, DISSECT, to overcome such challenges using

little supervision. We hypothesized that DISSECT could successfully find multiple distinct
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𝑓(𝑥)(Acquired) vs. 𝛼 (Desired) Classifier Posterior Probability
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Figure 5-13: Acquired vs. desired classifier posterior probability for generated samples
that constitute a CT on CelebA over 10K queries in total. The ideal would be a line
of slope one. Error bars represent 95% confidence intervals. The results suggest that
DISSECT performs on par with the three strongest baselines in terms of Importance.
Acquired and desired probabilities of generated samples are significantly correlated for
DISSECT (r=0.84, p<.0001), EPE-mod (r=0.86, p<.0001), and EPE (r=0.85, p<.0001).

concepts by generating a series of realistic-looking, counterfactually generated samples

that gradually traverse a classifier’s decision boundary. Our hypothesis is supported by

experimental results, both quantitatively and qualitatively. This method could provide

additional checks and balances for practitioners to probe how their model works before

deployment, especially in high-stakes tasks such as in medical decision making. DISSECT

helps identify how well the model-under-test reflects practitioners’ domain knowledge

and whether the model exhibits biases that might need to be rectified. Since this method

does not depend on predefined user concepts, it may help discover biases that were not

identified beforehand.

One avenue for future work is extending earlier theories [147, 227] to obtain theoretical

guarantees for the proposed approach. While we provide an extensive list of qualitative

examples in the appendix, further confirmation from human-subject studies to validate that

CTs exhibit semantically meaningful attributes could strengthen our findings.
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We emphasize that our proposed method does not guarantee to find all the biases

of a classifier, nor does it ensure semantic meaningfulness across all found concepts.

Additionally, it should not replace any current procedures for promoting accountability

in model evaluation such as model cards [167]; instead, it should be used in tandem with

them. Model fairness, robustness, and accountability require in-depth discussion across

multiple fields, from computer science to sociology to law to psychology; we hope the

new contributions in this chapter lead to better provide insights accessible to all people,

not just computer and AI scientists.

5.7 Statement of Contributions

Inspired by Been Kim’s work on machine learning and interpretability, I initiated this

project. I started early versions of this work during an internship at Google, where Brian

Eoff and Brendan Jou were my host and co-host, respectively. They provided guidance and

support throughout the project with code reviews and discussions about the experiments

and preliminary results. Been’s role has been indispensable. She helped shape this

work’s framing, positioning it with respect to related work, and continued advisement

on implementation and experiments. Chun-Liang Li shared his expertise in generative

models that informed the modeling choices and loss function design. After returning to

MIT, I continued working in this area with a new approach and conducted the analyses and

implementation. I also reimplemented the methods I investigated during my time at Google

as baselines for comparison. Been, Brendan, Brian, Chun-Liang, and Roz continued their

advisement and guidance throughout.

171



172



Chapter 6

Conclusions and Future Work

This thesis has introduced a conceptual framework for human-machine collaboration

composed of two components: interpretation of people by machines and interpretation

of machines by people. Throughout this thesis, I have presented several novel tools that

have made improvements across these axes. Based on the insights drawn from extended

experiments, I have argued that improvements across both axes can bring us closer to

human-centered (HC) optimality.

To provide a more comprehensive inference of the human state, Chapter 2 started by

addressing several challenges encountered in depressive symptom estimation in outpatient

clinical settings. Most of the previously proposed machine learning solutions used data

gathered through constrained conditions, used data requiring active patient input daily, and

rarely compared their performance against clinically validated mental health measurements.

However, Chapter 2 presented a pipeline that achieved less than 8% error rate in predicting

Hamilton Depression Rating Scale (HDRS) scores solely from phone and wearable sensor

data. Collecting measurable real-world behavioral and physiological data allows for

more scalable, accurate, and less burdensome symptom tracking and can overcome the

limitations of current office-based clinical interviews and self-reports in diagnosing and

treating major depressive disorder.

Making accurate inferences without increasing the human burden by requiring them to
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explicitly self-report their evaluations is not unique to measuring depressive symptoms.

Chapter 3 approached this challenge from another angle, text-based interactions. In the

open-domain dialog, automated evaluation metrics are poorly correlated with human judg-

ments of quality, if correlated at all. Chapter 3 showed that considering the conversation

trajectory and implicit signals that capture sentiment, semantics, and user engagement

that are psychologically motivated can be a powerful solution. Combined with a self-play

scenario where the dialog system talks to itself and calculates our proposed novel metric

based on the aforementioned qualities, an automated metric is born that significantly

alleviates this gap between automated and human-rated evaluation.

For a more comprehensive interpretation of machines by people, Chapter 4 character-

ized the interpretability benefits of uncertainty quantification in a multi-annotator setting.

Chapter 4 showed that applying Monte Carlo dropout to a classical network provides

uncertainty measures and helps disambiguate annotator and data bias, inter-rater disagree-

ment, and provides a proxy for model calibration. This disambiguation informs actionable

directions for improvements, a prioritization that otherwise would not be available.

For richer explanations that allow people to ask what-if questions, Chapter 5 presented

a novel explanation that jointly trains a generator, a discriminator, and a concept traversal

disentangler. Compared to various strong baselines, the proposed method simultaneously

satisfies several desirable qualities for interpretability across multiple realistic and synthetic

datasets. Results from multiple simulated experiments confirmed that our novel method

could help people reach more profound insights about the model by revealing potential

biases of a classifier, investigating its alignment with expert domain knowledge, and

identifying spurious artifacts that impact predictions.

6.1 Contributions

This thesis makes the following contributions that improve interpretation of people by

machines and interpretation of machines by people and bring us closer towards HC opti-
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mality:

• A novel pipeline using machine Learning techniques to estimate depressive symp-

toms from phone and wearable sensor data with low error rate;

• New data-driven insights that identify behavioral and physiological features most

informative for depressive symptom estimation;

• A novel, model-agnostic, and dataset-agnostic method using self-play to evaluate

open-domain dialog that approximates human evaluation more strongly than other

automated metrics known today;

• New insights about Monte Carlo dropout uncertainty estimation in deep learning

settings such as proxies for inter-rater disagreement, model calibration, and dataset

bias;

• A novel counterfactual explanation model to translate the decision boundary of a

trained model into human-understandable concepts, producing a trajectory of exam-

ples for each concept, and showing that our method outperforms other explanation

methods on five HC criteria.

• Novel tools and insights for identifying potential biases of a classifier, investigating

its alignment with expert domain knowledge, identifying spurious artifacts that

impact predictions, and informing actionable directions for model improvement.

The above contributions have led to several peer-reviewed publications directly [62,

63, 66, 67, 71, 74] and make up major parts of several other [69, 70, 72, 73, 104, 105,

112, 113, 116, 135, 163, 186, 187, 206, 207, 211, 263]. In addition, the code support-

ing these projects has been open-sourced and is available at https://github.com/

asmadotgh.
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6.2 Future Work

This thesis provided an array of technical solutions in the intersection of machine learning

and human-computer interaction to improve the interpretation of people by machines and

the interpretation of machines by people. However, this is only part of the solution to the

HC optimality puzzle. While I focus on a few application areas, a broader definition of

HC optimality could be under-specified. Many variables influence the problem definition

itself, let alone its solution. Articulating HC optimality criteria in a well-defined manner

in different application domains requires in-depth discussion across multiple fields, from

computer science to sociology to law to psychology.

While this thesis laid out the groundwork for improving the interpretations of people by

machines and interpretations of machines by people, there are several ways the techniques

provided can be improved or applied to other application domains. Additionally, the

insights drawn from this thesis gave rise to new questions for future exploration. For

example, one area of improvement is improving the accuracy of depressive symptom

estimation. In this thesis, we hand-crafted daily features and assumed no time dependency

between data points. One question is to what degree other ways of framing this question

might help predictive power, such as using few-shot learning approaches and treating each

individual as a new class.

Another area of future work is studying what characteristics naturally arise in high-

quality generated dialogs using an inverse reinforcement learning approach. Can we

extract the same qualities that we identified as necessary in successful human-human

conversations, such as sentiment, semantics, and user engagement? Can we disentangle

them successfully in the latent inferred representation?

One of the areas for future work is investigating to what degree the insights drawn

from Monte Carlo dropout uncertainty estimation are transferrable to other uncertainty

estimation methods in deep learning, such as ensemble methods [134] and stochastic

variational Bayesian inference methods such as Bayes by Backprop [10]. Additional

176



studies to confirm our findings’ robustness concerning hyperparameters such as dropout

probability can further strengthen the utility of our takeaway messages. Another question

for future work is to what degree these techniques can lead to insights about domains

and high-level concepts instead of single input images? Grouping samples and providing

statistics of such uncertainty measurements over a group instead of each input image can

be a potential strategy to address this question.

To deepen our understanding of our proposed techniques for interpreting machines

by people, further evaluation through human-subject experiments is another venue for

exploration. Human-subject experiments can complement the findings from our simula-

tion experiments by providing ratings of generated concepts and assigning semantically

meaningful names to them. Additionally, experiments to test if crowd-workers achieve a

learning task more accurately or quickly can further ground this work in the application.

Such experiments can help investigate the contingency of the results on the problem setup’s

choice to confirm its effectiveness across problem settings and close the loop on one of this

method’s potential applications in a realistic educational setting. Additionally, extending

this technique to domains beyond visual data such as time series or text-based input can

broaden this work’s impact.
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