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Abstract—The delivery of mental health interventions via
ubiquitous devices has shown much promise. A conversational
chatbot is a promising oracle for delivering appropriate just-in-
time interventions. However, designing emotionally-aware agents,
specially in this context, is under-explored. Furthermore, the
feasibility of automating the delivery of just-in-time mHealth
interventions via such an agent has not been fully studied. In this
paper, we present the design and evaluation of EMMA (EMotion-
Aware mHealth Agent) through a two-week long human-subject
experiment with N=39 participants. EMMA provides emotionally
appropriate micro-activities in an empathetic manner. We show
that the system can be extended to detect a user’s mood
purely from smartphone sensor data. Our results show that our
personalized machine learning model was perceived as likable
via self-reports of emotion from users. Finally, we provide a set
of guidelines for the design of emotion-aware bots for mHealth.

Index Terms—Mobile applications, affective computing, agent,
emotional intelligence, mental health.

I. INTRODUCTION

We increasingly rely on intelligent agents in our everyday
lives. For these systems to be trusted, natural and engaging,
they need to be able to have emotional intelligence. An assis-
tant that can sense a user’s emotional state and therefore, adapt,
is considered more valuable, intelligent and trustworthy [1]-
[3]. Virtual agents have shown success in multiple contexts,
including intelligent tutoring systems [4], health care decision
support [S], and more recently as virtual therapists [6].

Advances in affective computing [7] over the past twenty
years mean that it is now possible to deploy applications
in-situ and longitudinally. Computer sensing platforms can
now track a user’s state across time [8], which presents the
opportunity to personalize interactions with individuals based
on their affective state. Not only desktop computers, but
also smartphones and wearable devices have been studied to
conduct “Reality Mining” [9] and to infer the user’s context
and mood [10], [11].

A very promising application for intelligent agents is in
the delivery of mental health therapies. Prior work has shown
that simple micro-interventions, such as deep breathing or
talking with a friend [12] or practicing an act of kindness
[13] can be effective in increasing positive affect and reducing
negative affect. Mobile mental health is of growing interest,
as it leverages ubiquitous devices and can be used to reach
people, regardless of their location. Furthermore, smartphones
and watches are equipped with a wide variety of sensors that
can be very useful in affect detection. However, the affective
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qualities of an agent delivering such an intervention are poorly
understood. Is it beneficial if the agent expresses emotion?
Can an agent learn to react emotionally appropriately given
the context and user? Does an emotionally intelligent agent
magnify the impact of an intervention?

In the area of mental health, there are still open questions
about how to use technology to sense affective states and,
more importantly, how to effectively provide interventions
should one need help. Might recipients be more receptive to
technologies that are more affectively neutral, resulting in the
technology being trusted more or considered more objectively
intelligent? Or should designers try to resemble a counselor or
trusted companion, designing for a more empathic and human
experience during a technological intervention?

In this paper, we introduce the design of EMMA (EMotion-
Aware mHealth Agent), an emotionally intelligent wellness
personal assistant for the general population. EMMA provides
relevant micro-activities for mental wellness in an empathetic
manner and learns to detect mood from smartphone location
data. We evaluate different aspects of EMMA through a two-
week long human-subject experiment with N=39 participants.
This experiment is a randomized trial, comparing two groups:
EMMA, and a control condition. This experiment explores the
introduction of machine learning (ML) models for automating
affect detection and its influence on users’ perception of the
system. The first week was focused on capturing training data
and the models were deployed during the second week. Our
results showed that the chatbot that automated mood detection
using personalization and location data from the phone was
perceived equally as likable as the bot relying on one’s self-
reported emotion samples. We further explored the influence of
EMMA on latency and frequency of response to interventions.

II. RELATED WORK

Despite multiple attempts by several researchers, classifying
subjective metrics related to wellbeing and mood remains a
difficult task, with relatively low accuracies, ranging from 55%
to 80%. Examples include using smartphone data to model so-
cial interactions [14], to study the relationship between mood
and sleep [15], to detect stress, happiness, and mood [10],
[16]-[20], and to predict depressive symptoms [21]. Others
have also attempted prediction of fine grained symptoms on a
continuous scale using smartphone data and wearable sensors
[22]. Though not perfect, personal sensing -“collection and
analysis of data from sensors embedded in the context of daily



life with the aim of identifying human behaviors, thoughts,
feelings, and traits” [23] - has shown potential for monitoring
mental health and providing just-in-time interventions.

Ecological momentary interventions (EMIs) are becoming
more popular, especially for the treatment of clinical de-
pression and anxiety. They have been effective at reducing
symptoms of depression and anxiety, reducing outcomes of
stress, and increasing positive psychological functioning [24].
Automated text-messaging, used as an adjunct to therapy,
has helped users stay in therapy for longer, and attend more
sessions [25]. Synchronous, text-based interventions, either by
a human or a chat-bot, have shown significant mental health
outcome improvements compared to a wait-list condition [26].

There are endless subtleties in designing automated text
interventions for mental health purposes. Tailoring [27] and
diversifying [28] messages have shown potential for improv-
ing efficacy and reducing habituation. Sender, stimulus type,
delivery medium, heterogeneity, timing of delivery, frequency,
intensity, the trigger’s target, structure, narrative [29], and the
linguistic content of messages [30] are among the variables
that need to be optimized for the purpose of the intervention.
Other researchers have addressed low engagement and high
attrition in self-guided web-based interventions by building
a peer support platform - Panoply [31], [32] - and using a
conversational agent - woebot [33].

Conversational agents have shown promise in automating
the detection of psychological symptoms for both assessment
and the evaluation of treatment impact [34]. There is evidence
suggesting that the general population can also benefit from
such eHealth interventions. Anxiety and depression preven-
tion EMIs are associated with small but positive effects on
symptom reduction. The medium to long-term effects of such
interventions need further exploration [35].

In positive computing [36] literature, there have been efforts
around personalizing interventions toward the users’ prefer-
ences (e.g., [12], [37]) and using sensor data to derive the tim-
ing of interventions (e.g., [13], [38]). Moreover, conversational
agents that are emotionally expressive have shown promise
for behavior change applications [39]. However, targeting
relevant micro-activities toward a full range of emotional
states, varying the tone of delivery appropriately, and exploring
automation feasibility has not been fully studied.

III. METHOD

EMMA is an extension to an emotion-aware experience
sampling chatbot that we built [39]. In this section, we describe
how we extend the mobile app to measure phone sensors,
use ML to infer mood from sensor data, suggest appropriate
wellness activities, and seamlessly put them all into context
with affective surrounding text and adjust the app’s behavior
based on group condition and study’s temporal phase (Fig. 1).

A. Inferring Affect

We continuously captured geolocation and detailed activities
within the application to get contextual information from the
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Fig. 1. The visual design of the EMMA user interface.

phone!. To preserve battery power while capturing location,
we set the movement threshold to 10 meters and uploaded the
captured location once every minute. We were able to capture
at least 50 location data points from 97% of the participants,
including 294279 total location data points. The loggers cap-
tured data periodically in the foreground and background.

We translated the raw data into higher level features for each
hour. Our features included average latitude, average longi-
tude, standard deviation of latitude, and standard deviation of
longitude during every hour. We also included average distance
from work. Since all participants were internal members of the
same institution, the work location was approximated by the
building’s latitude and longitude. We also included distance
from home, where home was approximated by the median
of the location when the user was not at work. We also
encoded time of the day and day of the week as contextual
information. These types of location features have precedent
in prior mHealth studies [21]. Additionally, personal mea-
sures from pre-study surveys were included: user ID, gender,
baseline scores of the big five personality test [40], PANAS
(Positive and Negative Affect Scale, short version) [41], and
DASS (Depression, Anxiety and Stress Scale) [42]. PANAS
quantifies mood and DASS captures depression, anxiety, and
stress symptoms. For categorical variables such as user ID and
gender, we used their one-hot representation: when a variable
has d distinct possible values, it substitutes each observation
with d binary values, indicating the presence (1) or absence
(0) of the dth value. The prediction engine, explained in
Section V-A, uses these features to infer mood.

Additionally, to capture ground-truth emotion labels, we
administered experience sampling five times a day using a
visual grid (Fig. 1) based on Russel’s two-dimensional model
of emotion [43]. Note that self-reports were only used to
validate automatic sensor-based predictions of mood.

I Accelerometer data, calls and messages metadata, and calendar events
were also captured. However, due to the high missing data rate, we decided
to solely focus on location data. The missing data were due to differences in
the availability of sensor data on different versions of the Android OS.



B. Wellbeing Interventions

We built upon previous work on micro-interventions for
improving wellness [12], [35], [44]. This set of interventions
includes individual or social short activities that fall into one of
the following psychotherapy categories: positive psychology,
cognitive behavioral, meta-cognitive, or somatic interventions.
The activities provide a textual prompt and a link to an online
tool for executing the activity. This set of interventions has
shown reduction in depressive symptoms and improvement in
stress coping capabilities over the course of 4 weeks [12].

We revisited these activities to make them more appropriate
for different emotional states. We have assigned each micro-
activity to the most relevant quadrant(s) on the 2x2 Russell
circumplex model of emotion [43]. The interventions were
augmented to have 16 activities per quadrant. Table I shows a
sample intervention for each quadrant.

TABLE I
AN EXAMPLE OF WELLBEING INTERVENTIONS TARGETED AT EMOTIONAL
STATES. TL, TR, BL AND BR REFER TO THE SPATIAL LOCATIONS ON THE
2X2 CIRCUMPLEX MODEL OF EMOTION, E.G. TL: TOP LEFT QUADRANT.

State Sample Intervention
TL Write yourself a note with some issue that could wait for longer.
TR Spread the joy by calling a friend and passing along your positive

energy!
BL Affirmations always make us feel better. Check some of these out
and share them with some friends.
BR Celebrate with others! Write a positive comment to some friend’s
good posting.
C. Emotionally Expressive Delivery
We have scripted different emotionally charged phrasings
for each possible interaction and randomly selected one when
communicating with the user. For example, if the user was
classified in the BL. quadrant of Russel’s circumplex model of
emotion, the chatbot would recommend an activity by saying:
“Feeling glum? & I have a skill that might brighten your
day. " Let’s practice.”. For the control condition, we scripted
similar texts, but without any expression of affect or use of
emojis. For example, the parallel to the above example would
be: “Okay. Let’s try an intervention then.”

IV. HUMAN SUBJECTS

Group Total Gender Employment
Female Male FTE Intern  Other
EMMA 19 3 16 8 9 2
Control 20 4 16 9 8 3
TABLE II

PARTICIPATION DEMOGRAPHICS PER GROUP.

The study protocol was approved by the institutional review
board at Microsoft. Table II summarizes the group assignments
and demographics of participants. The population was gener-
ally mentally healthy?. Gift-card raffles were held at the end of
each week, for $75, and $100 respectively. Three participants
were randomly selected as winners of each raffle’.

2Baseline DASS [42] scores were captured. Mean values were within
suggested normal ranges, i.e. below 4.5 for depression scale, below 3.5 for
anxiety scale, and below 7 for stress scale.

3All participants were part of a bigger project and received $200 upon
successfully completing all studies.

V. EXPERIMENT: INTERVENTION EFFECTIVENESS,
SCALABILITY, AND AUTOMATION

Our first research question is regarding the capacity to scale
and automate the bot so that it predicts emotion labels only
from the user’s phone usage behavior and does not require
constant self-report of emotion labels. This question should
be first addressed objectively by calculating the accuracy
of mood prediction from phone sensor data. However, it is
also important to analyze users’ preference to understand if
substituting ground-truth emotion labels with a ML prediction
influences the likability of the system.

Our second research question is regarding how intervention
engagement is mediated by the emotional intelligence of the
bot delivering it. Previously researchers have studied response
time to phone notifications and accounted perceived disruption
as an influencing factor on response time [45]. Thus, we
measure response latency as a proxy for intervention disruption
vs. engagement. We also measure frequency of response to
interventions as another engagement quantification metric.

To answer these questions, we designed a two-week longitu-
dinal experiment. We randomized participants into two groups:
EMMA, and Control. During the first week, the EMMA group
had access to the mobile app that administered experience
sampling, detected user’s selected emotional quadrant, and
responded with emotionally relevant phrases. In addition,
EMMA would randomly select from a set of interventions
that were emotionally appropriate for the user’s current state.
EMMA would deliver the intervention surrounded with emo-
tionally expressive text, scripted for that quadrant. The Control
group received a similar experience, in terms of triggering
experience sampling and providing emotionally relevant in-
terventions; however, the bot was not emotionally expressive
itself. Though it understood which quadrant has been selected
by the user and provided skills accordingly, all the surrounding
text was neutral, without any expression of emotion.

During the second week, a ML model simultaneously pre-
dicted the user’s current affect. This prediction was the basis
of the suggested intervention in both EMMA and Control con-
ditions. In the EMMA condition, the surrounding affectively
expressive text was also driven by the prediction. The self-
reported emotion labels were still being stored on the cloud,
but only used later as the ground-truth measure for calculating
accuracy of the ML emotion detection model. Below, we
explain the ML model selection, training, and validation.

A. Machine Learning Models

To translate the sensor data into affect, we developed a
prediction engine. We used the data from all but last week of
the experiment, and split it into train and test sets (75% and
25% of samples respectively). We trained multiple models on
the training set, used 10-fold cross validation for parameter
optimization within each model category, and used the hold-
out test set for selecting the best model for the second week of
the experiment. Our criteria for best model selection were per-
formance, simplicity, and explainability, in that order. We also
report a baseline where the classifier always predicts the most



frequent class in the training set. Specifically for unbalanced
data, this is stronger than a random chance classifier.

1) Classification Models: We first implemented binary clas-
sifiers for valence (negative/positive) and arousal (low/high)
separately. We experimented with a range of classifiers includ-
ing Logistic Regression, Ridge, AdaBoost, Bagging, Random
Forest, and Gaussian Processes.

2) Regression Models: Additionally, we tried modeling
valence and arousal on a continuous scale. We normalized
the valence and arousal values and experimented with a range
of regression models including Linear Regression, several
regularized versions of linear regression (Ridge, Lasso, Elastic
Net), Bayesian Ridge, Support Vector Regression, Gradient
Boosting, AdaBoost, Random Forest, and robust to outlier
methods (RANSAC, Theil-Sen, and Huber). We later quan-
tized the predicted values to calculate accuracy measures.

3) Personalized Regression Models: Individuals tend to
have different baselines and oscillate around those values.
To better model such personal patterns, we calculated the
average of valence (v,) and arousal (ap) in the training set
per individual. Then, we explicitly modeled the variation
of valence and arousal from v, and ay, respectively, on a
continuous scale using regression models.

In Section V-A4, we show the boost in performance, espe-
cially for arousal detection, using personalization. Ultimately,
we selected the personalized model with Random Forest
regression for valence prediction and AdaBoost regression for
arousal prediction, and this is explained in the results section®.

4) Validation: Table III summarizes the performance of
classification, regression, and personalized regression models
on the hold-out set. As expected, the personalized regres-
sion model outperformed the classification, non-personalized
regression model and the baseline; thus, the personalized
regression model was selected for the second week of the
experiment. For valence prediction we used the Random Forest
and for arousal prediction we used the AdaBoost. As shown
in the table, predicting arousal has been more difficult than
valence. This could be due to the fact that most participant
tended to stay in the same binary valence state, while their
arousal value was closer to the neutral condition and bounced
more frequently between low and high energy.

To further confirm the performance of the selected model,
personalized regression, we calculated Pearson correlation
coefficients between the predicted and actual values for the
hold-out test-set. There was a significant correlation between
predicted and actual arousal (r=.43, p<.0001, n=387), and a
significant correlation between predicted and actual valence
(r=.57, p<k.0001, n=387).

4Although the final aim is to perform a classification task, what makes
the regression model better suit our problem is our ability to predict explicit
deviation from personal baseline rather than predicting the absolute value
in the label space. A continuous label space would easily allow such
transformation while it is not be feasible in a binary label space. We believe
that is why the personalized model, although not directly optimizing for
classification, works better than the classification models.

B. Measures

1) Latency in Response to Interventions: To test our hy-
potheses regarding the interplay between emotional intelli-
gence of the bot and intervention engagement, we captured and
analyzed the latency in response to interventions. We define
response latency as the time between receiving a notification
and responding to it in minutes. This measure is extracted
from the application logs of user clicks in the app UL

2) Frequency of Response to Interventions: We extract
response frequency as the average number of responses to
interventions per participant, per week, from the app usage
logs. This measure is a surrogate for intervention engagement.

3) User Preference: We assessed satisfaction and efficacy
of the system through different questions using a Likert scale,
ranging from 1 (strongly disagree) to 7 (strongly agree).
These questions asked about agent’s likability, intelligence,
and appropriateness of its “tone”. We asked about user pref-
erence for continuing to interact with the agent, and his/her
improvement in awareness of daily emotions. We also asked
if the notifications from the app where too frequent. Also, we
included an open-ended question for general comments. This
measure was captured at the end of each week. The questions
are provided in the Supplementary Materials section.

4) Experience Sampling: Using the visual experience sam-
pling grid, we captured valence (v) and arousal (a) on a
continuous scale, v, a € [0.0,1.0]. We used a 0.5 threshold to
discretize v into © which encodes positive vs. negative valence.
We discretized a similarly to derive a@ which encodes high vs.
low arousal. We used binary values of © and a for calculating
accuracy of our ML models on valence and arousal separately.
The 4 possible combinations of (¢,a) are mapped to the 4
quadrants on the visual grid: Top Left (TL), Top Right (TR),
Bottom Left (BL), and Bottom Right (BR). We used quadrant
accuracy for selecting the best performing ML model.

C. Results

1) Quantitative Performance: After deploying the person-
alized regression model in the second week of the experiment,
we did similar post-hoc analyses to calculate objective perfor-
mance of the model. Table IV summarizes the results.

We also calculated Pearson correlation coefficients between
the predicted and actual values for the final week. There was
a significant correlation between predicted and actual arousal
(r=.54, p<k.0001, n=702), and a significant correlation be-
tween predicted and actual valence (r=.43, p<.0001, n=702).

2) User Perception: The objective performance measures
show that the model had reasonable accuracy during the
automation phase. But did the users agree? Did they find the
first week of the experiment that used ground-truth emotion
samples as likable as the second week that used ML pre-
dictions? Or did the occasional prediction errors reduce the
perceived likability of the agent significantly? To answer this
question, we compared the self-reported agent evaluation for
when it was driven by ML vs. experience sampling.

We employed two one-sided t-tests (TOST) as a test for non-
inferiority on the average of all likability measures before and



TABLE III
TRAINING AND VALIDATION PHASE: RESULTS OF THE BEST PERFORMING MODELS ON THE HOLD-OUT SET. ACC. REFERS TO THE ACCURACY OF THE
MODEL. MODEL PARAMETERS: € - THE NUMBER OF ESTIMATORS, ¢ - CRITERION, m - MAXIMUM SAMPLES, AND A - LEARNING RATE.

Valence Arousal uadrants
Method Acc. Acc. gcc.
Classification Random Forest(c—10,c=gini) 80.4% Bagging(c—10,m=1.0) 49.4% 41.9%
Regression Random Forest(c—10,c=gini) 80.6% Random Forest(c—10,c=gini) 50.4% 40.1%
Personalized Random Forest(c—10,c=gini) 82.4% Ada Boost(.—50,1=1.0) 67.0% 56.8%
Baseline Most frequent 80.6% Most frequent 51.9% 42.4%

TABLE IV
TEST PHASE. RESULTS OF DEPLOYMENT (FINAL WEEK). ACC. - ACCURACY, e - THE NUMBER OF ESTIMATORS, ¢ - CRITERION, A - LEARNING RATE.

Valence Arousal uadrants
Method Best model Acc. Best model Acc. gcc.
Personalized Random Forest(c—10,c=gini) 82.2% Ada Boost(—50,1=1.0) 65.7% 56.6%
Baseline Most frequent 82.3% Most frequent 48.0% 41.5%
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Fig. 2. Response latency and frequency with one standard error bars.

after deploying ML. We set the equivalence intervals as fol-
lows: AL = AU = 0.5. We tested the two resulting composite
null hypotheses: H01 : A < —AL and H02 : A > AU. The
results were #(38) = 5.31, p < 0.0001 and #(38) = —6.33,
p < 0.0001, respectively. Since both of these one-sided tests
are statistically rejected, we conclude that the likability of the
agent is practically equivalent before and after deploying ML
and there is no significant decline in overall agent preference
as measured by the average of all the likability measures,
though no improvement either. This is a promising result,
suggesting that ML models could provide a scalable affect-
driven agent that does not require constant user effort for
providing self-reports, and users perceive it just as favorably.

3) Intervention Engagement: Fig. 2 visualizes the interven-
tion response time and frequency for each group. We observed
a trend suggesting that participants in the EMMA condition
tended to respond more quickly and to a higher number of
interventions compared to the control group. However, an
independent t-test between EMMA and the control condition
did not reach statistical significance at .05 level for response
latency or frequency”.

4) Qualitative Feedback: Some users mentioned enjoying
interacting with the app; pa041: “I love being part of this
study. The app is great, the surveys are short, and it’s been fun
thinking about my emotions.”; pa052: “I did find it interesting
to use the app and become aware of how stable my emotions
are. That was the most positive outcome for me in this study.”

S4(37) = —.99,p = .32;1¢(37) = 1.59,p = .11. Future studies are
needed for further validation.

Responses showed individual differences among users’ pref-
erences about interventions, however. Most users preferred
shorter and simpler activities; pa063: “The most successful
activities have involved watching short videos or images.”;
pa067: “I preferred the interventions that I could do on the
phone without making any noise.”; pa064: “Simple things, like
do a stretch or read a joke or think about this kind of fond
memory were generally helpful.”

Some participants mentioned that the activities were not
always optimized for the context, they did not have time for
them, or they did not like them. These points were brought up
by users from all groups. For example, pa035: “I’'m frequently
in the middle of other things when the notification shows
up and I don’t have time or it’s inappropriate for me to
engage with my phone for 5-10 minutes.”; pa038: “it doesn’t
take busyness into account.”; pa040: “It has suggested that I
walk over to a colleague’s office; but I was working remotely
so that wasn’t possible.”; paO41: “They seem like fantastic
suggestions. I'm just not going to stop what I'm doing.”;
pa064: “I found it very difficult to engage with many of
the skills that agent presented to me, due to time, the local
environment I was in, or lack of interest.” pa057: Some of
the tasks we were asked to do were not applying to me. For
example I have not posted anything on Facebook and I was
uncomfortable posting some random stuffs after a while.”

Importantly, several participants mentioned they preferred
not to be interrupted when feeling positive; pa081: “If someone
indicates that they are feeling happy and/or positive, they
shouldn’t have to do an activity.”; pa077: “I find it annoying
that when I report myself as happy or content, it still has
exercises for me, that typically end up making my mood
less positive.”; pa080: “I felt that when I reported positive
emotional state it shouldn’t then try and improve my mood
further with an exercise. I am already feeling positive so an
intervention will just distract me and lower my mood.”

Some participants mentioned the tone of the agent had
become expected, and thus not as effective; pa040: “The first
couple of times I saw feedback on my ratings it was kind of
neat; but now it just feels like it is expected that the app will
tell me this, so it doesn’t really have an effect on me.” This
suggests that personalizing the feedback from the agent based



on the context and preferences of the user would be preferable
to a rules-based approach as was implemented based on self-
reports. As participants started to anthropomorphize EMMA,
they expected more richness and variability in their interac-
tions which is in-line with previous research findings [12].
Some participants mentioned the way the activities were
provided sounded prescriptive; pa041: “I have a hard time
giving over control to any kind of app[...]”; pa064: “the agent
should frame the skill as something I can do if I want to.”

VI. DISCUSSION
A. Automating Affect Detection in an Affective Bot

We showed that our mobile bot was perceived equally as
likable as a bot that works with ground-truth emotion labels
captured by experience sampling. This is an encouraging re-
sult, as it relies only on smartphone location data, a ubiquitous
technology that can significantly reduce the users’ burden of
self-reporting during intervention applications. It suggests that
automatic - albeit error-prone - affect detection can still be as
effective as self-report in certain contexts.

B. Tailoring Wellness Suggestion Activities to Affective States

We expected positive states to be good times for practicing
skills and building resilience. Also, we expected negative states
to benefit more from immediate intervention as a treatment.
However, from user feedback we learned that suggesting such
activities when a user is in a high energy and positive valence
state may have an opposite effect. Note that we focused on a
general population rather than clinically depressed individuals.
It might be that our healthy participants did not feel the need
to practice such skills and found them simplistic, and thus
were sometimes annoyed by them. This irritation may have
undermined the benefits of practicing such activities in bottom
left or top left quadrants of Russel’s circumplex model and the
role of emotional vs. non-emotional conditions.

C. Guidelines for Affective Chatbot Design and EMI Delivery

Do not interrupt a good mood for an EMI. Participants
mentioned the high rate of interruption by personal techno-
logical devices and not wanting to be controlled by them for
unnecessary reasons. Our population expressed that when they
were in a high energy and positive valence mood, they were
already engaged in rewarding activities; thus, interrupting them
for an intervention would annoy them and sometimes resulted
in a less positive mood. However, they found the activities
more useful when in a low energy and negative valence mood.

Short, simple, and effortless activities are better received.
Participants mentioned that they were more likely to perform
shorter and simpler activities. This highlights the fact that
success of an activity in a self-guided mHealth setting first
depends on how likely it is to be performed. This calls for the
design of more effortless interventions such as [46].

Contextual relevance makes EMIs more respectful. Users’
feedback revealed that making EMIs contextually relevant is
one of the most important elements in designing an intelligent
system. The simplest way to mitigate this is to ask participants

upfront what times they would like to receive triggers. Taking
into account busyness, time of the day, and sensor data to
detect context switching are other ways to optimize timing of
triggers. This is in line with previous findings (e.g. [12], [13]).

Diversifying content is required to prevent habituation.
Habituation is one of the main reasons of interventions being
ignored. Starting with a big enough pool of interventions
can delay habituation. However, more dynamic methods can
sustain the system in the long-term. Novel ways of com-
bining exploitation and exploration to maximize efficacy of
personalized suggestions [47], including ML techniques to
automate content creation, and using peer support can be
example solutions to this problem [31], [32].

Providing an opt-out choice is needed for a respectful EMI.
Especially for a population with relatively low scores on
depression, anxiety, and stress scales, which do not qualify
for clinical depression or anxiety, users may prefer to maintain
control over receiving interventions and providing an opt-out
choice may be necessary for the EMI system to be perceived
as respectful and intelligent—and ultimately, useful.

D. Limitations

We relied on the authors’ expertise in psychology and
affective computing to assign interventions to their appropriate
emotional state. Due to the high missing data rate from multi-
ple potential sources, we were unable to fully capture context.
In the future, we would like to evaluate the appropriateness
of intervention assignment through a user study and explore
more sophisticated ML models to better leverage sparse data.

VII. CONCLUSIONS

We present EMMA, the first emotionally-intelligent and
expressive mHealth agent, that provides wellness suggestions
in the form of micro-interventions. We quantitatively and
qualitatively evaluated EMMA in a human-subject experiment
over the course of 2 weeks, with N=39 participants.

We have shown that our system can detect a user’s mood
from passive smartphone sensor data and that using automati-
cally predicted emotional states to drive emotional dialog and
the choice of interventions did not impact people’s opinions
of the agent versus manual EMI entry. This finding means we
could reduce the burden on the user to report their emotions
and make EMMA highly scalable.

Our longitudinal study allowed us to identify several design
guidelines for future work. Specifically, we found that deliv-
ering interventions was not effective for those people already
in a high activation positive mood, and that diversity of dialog
and content is necessary to avoid habituation. Our observations
highlighted the importance of contextual relevance, simplicity,
and reserving an opt-out choice for successful EMIs. We
believe that, if interventions are more focused to specific
moods and contexts, and are personalized and less predictable,
they have the potential to improve positive affect.
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