
Comparing Representational and Functional
Similarity in Small Transformer Language Models

Dan Friedman, Andrew Lampinen, Lucas Dixon, Danqi Chen, Asma Ghandeharioun

Abstract

What kinds of solutions do neural networks learn? In many situations, it would be
helpful to be able to characterize the solution learned by a neural network, includ-
ing for answering scientific questions (e.g. how do architecture changes affect
generalization) and addressing practical concerns (e.g. auditing for potentially
unsafe behavior). One approach is to try to understand these models by study-
ing the representations that they learn—for example, comparing whether two net-
works learn similar representations. However, it is not always clear how much
representation-level analyses can tell us about how a model makes predictions. In
this work, we explore this question in the context of small Transformer language
models, which we train on a synthetic, hierarchical language task. We train mod-
els with different sizes and random initializations, evaluating performance over the
course of training and on a variety of systematic generalization splits. We find that
existing methods for measuring representation similarity are not always correlated
with behavioral metrics—i.e. models with similar representations do not always
make similar predictions—and the results vary depending on the choice of repre-
sentation. Our results highlight the importance of understanding representations
in terms of the role they play in the neural algorithm.

1 Introduction

Representation similarity analysis [10] is a common method for characterizing the relationship be-
tween different neural networks [e.g. 11, 18, 20, 13, 9, 6, 15, 16]. However, it is unclear whether
we can expect models with similar representations to make similar predictions [4, 8]. In general, the
relationship between representation and behavior depends on how the representations are used by
later parts of a model, which is a function of the model architecture and training setting.

Therefore, in this work, we study the relationship between representational and functional mea-
sures empirically in the context of a particular architecture and setting—small Transformer lan-
guage models [19], trained on the Dyck balanced parenthesis languages. The Dyck languages ex-
hibit fundamental properties of natural languages—recursive, hierarchical structure, which give rise
to long-distance dependencies—but are simple enough to admit simple, human-interpretable algo-
rithms [24, 22]. For this reason, they have been widely studied in prior work on the expressivity
of Transformer language models [7, 24], and in interpretability [23]. A benefit of this setting is
that we can largely reverse-engineer the solutions that these models learn, to better understand the
relationship between representations and behavior.

Specifically, we train models with different embedding sizes and random initializations and evalu-
ate performance on different systematic generalization splits. We measure representation similarity
using standard metrics from prior work [4], and evaluate whether models that have similar repre-
sentations also make similar predictions. We find that measures of representational similarity do
not always agree with functional similarity. In particular, the differences are greatest on out-of-
distribution evaluation settings, and representations from different model components lead to dif-
ferent similarity profiles. This analysis highlights some of the interpretability challenges that have

Preprint.



been noted in prior work, including the limitations of methods that analyze models with respect to a
particular data distribution [2], and that analyze individual model components in isolation [23]. Our
findings can motivate future work on understanding neural networks in terms of the algorithms that
they implement.

2 Setting

Dyck languages Dyck-k is the family of balanced parenthesis languages with up to k bracket
types. Following the notation of Wen et al. [23], the vocabulary of Dyck-k is the words {1, . . . , 2k},
where, for any t ∈ [k], the words 2t−1 and 2t are the opening and closing brackets of type t, respec-
tively. Given a sentence w1, . . . , wn, the nesting depth at any position i is defined as the difference
between the number of opening brackets in w1:i and the number of closing brackets in w1:i. As
in prior work [24, 14, 23], we focus on bounded-depth Dyck languages [7], denoted Dyck-(k,m),
wherem is the maximum nesting depth. We train models on Dyck-(20, 10) and evaluate on two gen-
eralization splits. First, we recreate the structural generalization split described by Murty et al. [14]
by sampling sentences with bracket structures that were not in the training set (Unseen struct). The
bracket structure of a sentence is defined as the sequence of opening and closing brackets (e.g., the
structure of “([])[]” is “001101”). Second, we create a Unseen depth generalization set by sampling
sentences from Dyck-(20, 20) and only keeping those sentences with a maximum nesting depth of
at least 10. We evaluate models’ accuracy at predicting closing brackets that are at least 10 positions
away from the corresponding opening bracket, and score the prediction by the closing bracket to
which the model assigns the highest likelihood.

Transformer language models The Transformer [19] is a neural network architecture for pro-
cessing sequence data. The input is a sequence of tokens w1, . . . , wN ∈ V in a discrete vocabulary
V . At the input layer, the model maps the tokens to a sequence of d-dimensional embeddings
X(0) ∈ RN×d, which is the sum of a learned token embedding and a positional embedding. Each
subsequent layer i consists of a multi-head attention layer (MHA) followed by a multilayer percep-
tron layer (MLP): X(i) = X(i−1) + MHA(i)(X(i−1)) + MLP(i)(X(i−1) + MHA(i)(X(i−1))).1
Multi-head attention (with H heads) can be written as

MHA(X) =

H∑
h=1

softmax(XW h
Q(XW h

K)>)XW h
V W

h
O,

where W h
Q,W

h
K ,W

h
V ∈ Rd×dh are referred to as the query, key, and value projections respectively,

and W h
O ∈ Rdh×d projects the output value back to the model dimension. The MLP layer operates at

each position independently; we use a two-layer feedforward network: MLP(X) = σ(XW1)W2,
where W1 ∈ Rd×dm ,W2 ∈ Rdm×d, and σ is the ReLU function. The output of the model is a
sequence of token embeddings, X(L) ∈ RN×d. We focus on autoregressive Transformer language
models, which define a distribution over next words, given a prefix w1, . . . , wi−1 ∈ V: p(wi |
w1, . . . , wi−1) ∝ exp(θ>wi

X
(L)
i−1), where θwi

∈ Rd is a vector of output weights for word wi.

Transformer algorithms for Dyck The main algorithmic task that a Transformer has to learn is
to identify, at each position, the most recent un-closed opening bracket, which determines the type
of closing bracket that can appear in the next position. For example, given the prefix “[]([]”, the
only possible closing bracket is “)”. Yao et al. [24] developed a construction for accomplishing
this task with a two-layer Transformer: The first attention layer calculates the bracket depth at each
position, defined as the number of opening brackets minus the number of closing brackets; the first-
layer MLP embeds each depth to a separate direction; and the second attention layer uses depth
embeddings to find the most recent unmatched opening bracket, which is the most recent bracket at
the current depth. Empirically, we find that the Transformers we train resemble this construction,
with the second-layer attention head generally attending to the correct matching bracket.

2



Figure 1: Accuracy at predicting closing brackets over the course of training, for models with dif-
ferent hidden dimensions and random initializations.

Figure 2: For each embedding size, we compare the similarity between models with different random
initializations and the same size. The representations are the key and query embeddings from the
second attention layer. The representation similarity metric increases with model width, but the
prediction similarity score decreases.

3 Experiments

Bracket-matching accuracy We train two-layer Transformer language models on the Dyck-
(20, 10) training data described in the previous section. Each layer has one attention head, one
MLP, and layer normalization, and we vary the embedding dimension. For each embedding size, we
train models with three random initializations. Details about the model and training procedure are
in Appendix A.2 and A.3. Fig. 1 plots the bracket-matching accuracy over the course of training.
All models eventually achieve almost perfect accuracy on the unseen structure generalization set,
but performance varies on the depth generalization set both across models and over the course of
training. In particular, the widest models achieve the highest accuracy earlier in training, after which
point generalization performance degrades.

Comparing key and query embeddings We start by examining the key and query embeddings
from the second attention layer. These embeddings play a central role in the Transformer algorithm
described above, by encoding the nesting depth at each position, and, from visual inspection, we find
that the Transformers we train resemble this construction (Appendix Fig. 5). Therefore, we would
expect that similarity between these key and query embeddings should be correlated with functional
similarity. In Figure 2, we compare the average similarity of each model to the other models with
the same embedding size. We measure representational similarity using Centered Kernel Analyis
(CKA) [9] and define Prediction Similarity as the percentage of cases for which both models make
the same prediction, considering only cases where the true next token is a closing bracket. See
results with other similarity measures in Appendix B. Representational and behavioral similarity
metrics paint different pictures: representational similarity increases with model size, consistent
with findings in prior work [13, 9]. However, on the out-of-distribution splits, prediction similarity
decreases with embedding size.

Measuring similarity over time In Figure 3, we plot the same metrics over the course of training.
In terms of representational similarity, the smallest models become more similar to each other over
time, while the larger models become slightly less similar, but the overall order of model sizes

1The standard Transformer also includes a layer-normalization layer [1], which we omit here.

3



Figure 3: Average similarity between models with the same width, over the course of training. The
representations are the key and query embeddings from the second attention layer.

Figure 4: Average similarity (CKA) between models with the same width, over the course of train-
ing, broken down by representation, and evaluated on the depth generalization split.

remains the same. In terms of prediction similarity, the similarity scores diverge over time, with the
largest models becoming the least similar to each other by the end of training.

Comparing different model components In the previous sections, we conjectured that prediction
similarity would be correlated with similarity between the second-layer key and query embeddings,
because these play a central role in the bracket matching algorithm. One possible explanation for our
negative finding is that another model component plays a larger role in determining what the models
will predict, especially in out-of-distribution settings. In Figure 4, we plot the similarity trajectories
using different choices of representation on the depth-generalization split. The representations that
most resemble the trajectory of prediction similarity (plotted in Fig. 3) are from the second layer
MLP output, suggesting that the MLP might be more important for explaining prediction differences
in this setting, and underscoring the limitations of analyzing model components in isolation.

4 Conclusion

In this work, we studied the connection between representational similarity and functional similarity
in Transformer language models. In particular, we focused on small Transformers trained on Dyck
balanced-parenthesis languages, a setup that would allow us to largely reverse-engineer the neural
algorithm and study its behavior under systematically different distribution shifts. Across different
model sizes and initializations, we found that representational similarity is not always associated
with model behavior, especially when evaluated out of distribution. As model size increases, repre-
sentational similarity can even diverge from behavioral similarity over the course of training. Finally,
the role that the representation plays in the neural algorithm dictates the extent to which it would be
associated with the model’s behavior.

4



References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[2] Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and
Martin Wattenberg. An interpretability illusion for BERT. arXiv preprint arXiv:2104.07143,
2021.

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: Composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

[4] Frances Ding, Jean-Stanislas Denain, and Jacob Steinhardt. Grounding representation sim-
ilarity through statistical testing. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[5] Tom Hennigan, Trevor Cai, Tamara Norman, Lena Martens, and Igor Babuschkin. Haiku:
Sonnet for JAX, 2020. URL http://github.com/deepmind/dm-haiku.

[6] Katherine Hermann and Andrew Lampinen. What shapes feature representations? Exploring
datasets, architectures, and training. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

[7] John Hewitt, Michael Hahn, Surya Ganguli, Percy Liang, and Christopher D Manning. RNNs
can generate bounded hierarchical languages with optimal memory. In Empirical Methods in
Natural Language Processing (EMNLP), pages 1978–2010, 2020.

[8] Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity of
neural network models: A survey of functional and representational measures. arXiv preprint
arXiv:2305.06329, 2023.

[9] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of
neural network representations revisited. In International Conference on Machine Learning
(ICML), 2019.

[10] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity anal-
ysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience,
page 4, 2008.

[11] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent learning:
Do different neural networks learn the same representations? In International Conference on
Learning Representations (ICLR), 2016.

[12] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations (ICLR), 2019.

[13] Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[14] Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher Manning. Grokking of
hierarchical structure in vanilla transformers. In Association for Computational Linguistics
(ACL), pages 439–448, 2023.

[15] Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the
same things? Uncovering how neural network representations vary with width and depth. In
International Conference on Learning Representations (ICLR), 2021.

[16] Jason Phang, Haokun Liu, and Samuel Bowman. Fine-tuned Transformers show clusters of
similar representations across layers. In BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pages 529–538, 2021.

5

http://github.com/google/jax
http://github.com/google/jax
http://github.com/deepmind/dm-haiku


[17] Ofir Press and Lior Wolf. Using the output embedding to improve language models. In Euro-
pean Chapter of the Association for Computational Linguistics (EACL), pages 157–163, 2017.

[18] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: Singu-
lar vector canonical correlation analysis for deep learning dynamics and interpretability. In
Advances in Neural Information Processing Systems (NIPS), volume 30, 2017.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems (NIPS), 30, 2017.

[20] Liwei Wang, Lunjia Hu, Jiayuan Gu, Zhiqiang Hu, Yue Wu, Kun He, and John Hopcroft.
Towards understanding learning representations: To what extent do different neural net-
works learn the same representation. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[21] Gail Weiss, Yoav Goldberg, and Eran Yahav. Extracting automata from recurrent neural net-
works using queries and counterexamples. In International Conference on Machine Learning
(ICML), pages 5247–5256. PMLR, 2018.

[22] Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like Transformers. In International
Conference on Machine Learning (ICML), pages 11080–11090. PMLR, 2021.

[23] Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Risteski. (Un)interpretability of Transform-
ers: A case study with Dyck grammars. In ICML 2023 Workshop on Challenges in Deploying
Generative AI, 2023.

[24] Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention
networks can process bounded hierarchical languages. In Association for Computational Lin-
guistics and International Joint Conference on Natural Language Processing (ACL-IJCNLP),
pages 3770–3785, 2021.

A Implementation Details

A.1 Dataset Details

As described in Section 2, we sample sentences from Dyck-(10, 20), the language of balanced brack-
ets with 20 bracket types and a maximum nesting depth of 10. We use the sampling distribution de-
scribed and implemented by Hewitt et al. [7],2 following existing work [24, 14]. We insert a special
beginning-of-sequence token to the begin of each sequence, and append an end-of-sequence token
to the end. Note that we discard sentences with lengths greater than 512. The training set contains
200k sentences and all the generalization sets contain 20k sentences. In all cases, we sample sen-
tences, discarding sentences according to the rules described in Section 2, until the dataset has the
desired size.

A.2 Model Details

For our Dyck experiments, we use a two-layer Transformer, with each layer consisting of one at-
tention head, one MLP, and one layer normalization layer. The model has an embedding size in
{16, 32, 64, 128, 256}, and the attention key and query embeddings have the same dimension. Each
MLP has one hidden layer with a dimension four times larger than the embedding size, followed by
a ReLU activation. The input token embeddings are tied to the output token embeddings [17], and
we use absolute, learned position embeddings. The model is implemented in JAX [3] and adapted
from the Haiku Transformer [5].

2https://github.com/john-hewitt/dyckkm-learning

6

https://github.com/john-hewitt/dyckkm-learning


Figure 5: Key and query embeddings for inputs from the training set and out-of-distribution depth
generalization set, projected onto the first and second singular vectors. The embeddings are from
the second layer of a model with an embedding size of 256 after training for 500,000 steps. Visually,
the representations for out-of-distribution depths support some form of depth generalization, but the
deeper depths are not separated as effectively, leading to prediction errors.

A.3 Training Details

We train the models to minimize the cross entropy loss:

L =
1

|D|
∑

w1:n∈D

1

n

n∑
i=2

p(wi | w1:i−1),

where D is the training set, p(wi | w1:i−1) is defined according to Section 2, and w1 is always a
special beginning-of-sequence token. We train the model for 500,000 steps with a batch size of 128
and use the final model for further analysis. We use the AdamW optimizer [12] with β1 = 0.9,
β2 = 0.999, ε = 1e-7, and a weight decay factor of 1e-4. We set the learning rate to follow a linear
warmup for the first 10,000 steps followed by a square root decay, with a maximum learning rate of
5e-3. We do not use dropout.

B Additional Results

Figure 5 plots the key and query embeddings from a Dyck language model. These embeddings
resemble human-written constructions for modeling Dyck languages with Transformers [24, 21]: the

7



Figure 6: For each embedding size, we compare the similarity between models with different random
initializations and the same size. The representations are the key and query embeddings from the
second attention layer. We compare Projection-weighted Canonical Correlation Analysis (PWCCA),
Centered Kernel Analysis, and Orthogonal Proctrustes analysis, following Ding et al. [4]. The rep-
resentation similarity metrics paint different pictures of the relationships between these models.

first attention layer calculates the nesting depth at each position, and the second attention matches
brackets by matching depths.

Figure 6 plots the similarities between models with the same width from the final training check-
point, using additional representation similarity metrics. The metrics are calculated using the code
from Ding et al. [4],3 (adjusted to give similarity scores rather than dissimilarity scores).

3https://github.com/js-d/sim_metric

8

https://github.com/js-d/sim_metric

	Introduction
	Setting
	Experiments
	Conclusion
	Implementation Details
	Dataset Details
	Model Details
	Training Details

	Additional Results

