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Abstract

This work demonstrates how mixed effects ran-

dom forests enable accurate predictions of de-

pression severity using multimodal physiological

and digital activity data collected from an 8-week

study involving 31 patients with major depressive

disorder. We show that mixed effects random

forests outperform standard random forests and

personal average baselines when predicting clin-

ical Hamilton Depression Rating Scale scores

(HDRS17). Compared to the latter baseline, ac-

curacy is significantly improved for each patient

by an average of 0.199-0.276 in terms of mean

absolute error (p ≪ 0.05). This is noteworthy

as these simple baselines frequently outperform

machine learning methods in mental health pre-

diction tasks. We suggest that this improved per-

formance results from the ability of the mixed ef-

fects random forest to personalise model param-

eters to individuals in the dataset. However, we

find that these improvements pertain exclusively

to scenarios where labelled patient data are avail-

able to the model at training time. Investigating

methods that improve accuracy when generalis-

ing to new patients is left as important future

work.

1. Introduction

In recent years, smartphones and wearable technologies

have become increasingly ubiquitous, while data process-

ing and machine learning (ML) capabilities have matured.

As a result, excitement has risen about a new digital era for

mental health diagnosis, treatment, and prevention, where

technology will be used to augment clinical workflows and

to improve direct-to-consumer products such as digital ther-

apeutics (Doraiswamy et al., 2019; Hsin et al., 2018).

*Equal contribution 1MIT Media Lab, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA. 2The Depression
Clinical and Research Program, Massachusetts General Hospi-
tal, Boston, MA, USA. Correspondence to: Robert Lewis <rob-
lewis@media.mit.edu>.

ICML 2021: Computational Approaches to Mental Health Work-
shop. Copyright 2021 by the author(s).

Digital phenotyping refers to the collection of continu-

ous, multimodal, and in-situ data from patients using

smartphone and wearable devices (Torous et al., 2016;

Onnela & Rauch, 2016). It is considered central to dig-

ital mental health, as one can use ML on these data to

enable the accurate forecasting and detailed understand-

ing of mental health psychopathology (e.g., by discovering

phenotypes that associate with mental health states). To

give an example, a regressor could be learned to map clin-

ical depression scores, such as the Hamilton Depression

Rating Scale, HDRS (Hamilton, 1960), onto these digital

data streams. Given such data can be collected passively

and continuously, more frequent predictions of depression

severity (via the HDRS score) can be made. This can pro-

vide substantial improvements to the patient’s care: for

example, by enabling the early detection of treatment re-

sponse or acute phase onset (e.g., relapse), care pathways

can be adjusted expeditiously to improve patient outcomes

(Huckvale et al., 2019).

However, enabling this vision is not trivial due to a multi-

tude of factors, including the high degrees of heterogeneity

both in the presentation of mental health conditions and

in patients’ digital data streams. In such data scenarios,

where multiple observations exist for each patient (i.e., re-

peated measures data) and these observations are not in-

dependent and identically distributed across patients (i.e.,

the data are non-IID), it becomes increasingly difficult to

learn a single predictor that is accurate for all the patients

in the cohort. Indeed, this performance degradation can

be so severe that it has been observed that simple personal

baselines – such as calculating the mean or median of that

target variable over observations in the training set – of-

ten outperform state-of-the-art ML models (Demasi et al.,

2017; Pedrelli et al., 2020). Such limitations are a signifi-

cant barrier to using ML to augment mental health care and

understanding.

In this work, we directly address the question of the utility

of ML for HDRS depression severity prediction by com-

paring mixed effects random forests to simpler baselines.

Mixed effects methods extend standard ML models to han-

dle heterogeneous data. They do so by learning a subset

of parameters for each individual: as such, they can be con-

sidered a form of model personalisation. Our contributions

http://arxiv.org/abs/2301.09815v1
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are twofold: first, we outline how we apply this technique

to a digital phenotyping dataset that was collected in a clini-

cal context and contains features related to known biomark-

ers of depression (e.g., quality of sleep). Second, we report

empirical results that suggest mixed effects methods signif-

icantly improve depression severity predictions over stan-

dard random forests and average personal baselines.

2. Related Work

2.1. Machine Learning for Mental Health Prediction

There is promising evidence on the feasibility of us-

ing ML to predict mental health states (e.g., clini-

cal scores of depression) from physiological and be-

havioural data. Features have been engineered from

various modalities, including self-report surveys, loca-

tion patterns, smartphone usage (e.g., social media),

electrodermal activity, accelerometer, and heart rate

data (Grünerbl et al., 2014; De Choudhury et al., 2014;

Saeb et al., 2015; Canzian & Musolesi, 2015; Suhara et al.,

2017; Ghandeharioun et al., 2017; Pedrelli et al., 2020).

However, much work remains. For example, more lon-

gitudinal studies are required to collect multimodal data

streams and annotate them with clinical scores so high-

quality data is available to train ML models, and more quan-

titative contributions are required to identify ML methods

that reliably outperform personal baselines.

2.2. Mixed Effects Machine Learning

Mixed effects models are used in statistics and economet-

rics for longitudinal data, where repeated measures are col-

lected from individuals in the system (Wu & Zhang, 2006;

Fitzmaurice et al., 2012). They incorporate random effect

parameters into models in addition to the fixed effect terms,

which adjusts the model’s assumptions to account for het-

erogeneous data with multiple sources of random variabil-

ity (e.g., both intra- and inter-individual). As a result,

mixed effects methods allow stronger statistical conclu-

sions to be made about the factors that correlate with the

observed variance.

More recently, mixed effects methods have been con-

sidered in the context of ML (Hajjem et al., 2011;

Sela & Simonoff, 2012; Ngufor et al., 2019), where they

are included as a way to improve predictive accuracy. By

granting the model the flexibility to learn some random ef-

fect parameters for each individual, predictions are person-

alised and, thus, accuracy is increased. This improvement

has been noted in several contexts though, to the best of our

knowledge, prior work has not yet studied if mixed effects

machine learning methods can improve accuracy when pre-

dicting mental health severity using multimodal digital phe-

notyping data.

3. Methods

In this work we empirically assess the performance of a

mixed effects random forest (MERF) method1 on repeated

measures HDRS scores. The method is referred to as mixed

effects as it contains both fixed effect parameters – i.e., those

that are shared by all clusters2 in the dataset – and random

effect parameters – i.e., those that are unique for each clus-

ter. Beyond the random effect parameters, we are inter-

ested in the random forest component of this method (the

fixed effect), given the random forest’s ability to maintain

performance when there are many more features than ob-

servations (i.e., in the p ≫ n context) (Chen & Ishwaran,

2012). The MERF model (Hajjem et al., 2014) is defined

by:

Yi = f(Xi) +Zibi + ǫi (1)

bi ∼ N(0,D) (2)

ǫi ∼ N(0,Ri) (3)

Vi = Cov(Yi) = ZiDZ
T

i
+Ri (4)

Ri = σ
2
Ini

(5)

Where i=1, ...,m are clusters (i.e., patients) with ni obser-

vations each (j=1, ..., ni); Yi is the regression target vari-

able (ni×1); Xi is a design matrix of input features (ni×p)

and f(Xi) is the fixed effect random forest estimator; Zi

is also a design matrix (ni×q), that usually contains a sub-

set of features from Xi; bi are random effect parameters

(q×1) for each i, and Zibi is assumed to be linear; ǫi is

the measurement error for each i; and, D, Ri and Vi are

covariance matrices with assumptions that i) bi and ǫi are

independent of each other, and ii) between-cluster variation

is the only source of correlation between the repeated mea-

surements Yi, such that intra-subject measurement errors

ǫi are independent and Ri is diagonal per (5).

While Zi may include many features, only a random in-

tercept is used in the experiments of this paper. Thus, Zi

becomes a (ni×1) vector of ones, and so (1-5) can be ex-

pressed for each observation ij as:

Yij = f(Xij) + bi + ǫij (6)

E(Yij |bi) = f(Xij) + bi (7)

E(Yij) = f(Xij) (8)

E(Yij |bi) is the conditional expectation of the model, and

can be computed for clusters i that are known when the

1We explicitly acknowledge the authors of the MERF theory
(Hajjem et al., 2014) and of the opensource Python implementa-
tion (MERF) whose work we build upon in this empirical paper.

2In this context, clusters refer to the individuals in the system
that generate repeated measures data (e.g., patients) and they are
specified a priori (i.e., it is assumed that the data from each patient
forms a cluster and this does not change as the model is fit).
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model is fit. E(Yij) is the unconditional expectation and

it represents how the model predicts for a cluster i that is

unknown at training time. These expectations are useful

for interpreting model prediction errors for existing versus

new users. The model parameters are fit using an expecta-

tion maximisation (EM) procedure with convergence mon-

itored by a generalised log likelihood objective function.

Further details of this training algorithm can be found in

Supplementary Material (SM) Section A.

4. Experimental Work

4.1. Data

The dataset consists of 1,643 days of data collected from

31 patients with major depressive disorder (MDD), where

MDD is categorised per the DSM-IV3 and patients have a

score of ≥ 19 on the 28-item Hamilton Depression Rat-

ing Scale, HDRS28 (Hamilton, 1960). Patients were mon-

itored for 8 weeks and several categories of data were col-

lected, with multiple observations per participant (i.e., the

data has repeated measures). First, clinical assessments

were performed by clinicians during 6 visits (once dur-

ing screening followed by 5 bi-weekly visits during the

8-week monitoring period). These clinical scores include

the HDRS28, as well as a shorter 17-item HDRS scale,

HDRS17, which is commonly used to measure depressive

symptom severity in clinical trials. Second, multimodal

data was collected passively and continuously using mo-

bile phones (MovisensXS, 2012) and physiological-sensor

wristbands (Empatica E4, 2019). This data includes modal-

ities known to associate with depressive symptomatology,

including electrodermal activity (EDA) and heart rate vari-

ability (HRV), sleep characteristics, physical activity, dig-

ital activity (e.g., location and smartphone usage), and

weather information. Features are created at various levels

of temporal aggregation, including hourly and daily. Given

the limited space, the feature design is discussed at length

in Table 2 of SM Section B, as well as in our previous work

(Pedrelli et al., 2020).

For the experiments, the dataset contains 2,820 features,

and its rows are filtered to only include data captured on

days with clinical scores, resulting in 149 observations in

total4. Within observations, subsets of features are some-

times missing as a result of various events in the study pe-

riod (e.g., sensor not worn for part of the day). These miss-

3The Diagnostic and Statistical Manual of Mental Disorders
4th edition (DSM-IV) provides a taxonomy for the classification
of mental disorders (Bell, 1994). It is published by the Ameri-
can Psychiatric Association and is used in clinical practice in the
USA.

4While 5 clinical scores are expected per participant during the
observation period (excluding the initial screening visit), several
participants had missing observations (6 are missing in total).

Random Split Time Split User Split
Evaluation Scenario

0

1

2

3

4

5

6

M
AE

 o
f H

DR
S 
pr
ed
ict
io
n

n/a n/a

Prediction model
Random Forest
Group Median
Baseline
Group Mean
Baseline
Patient Screen
Baseline
Patient Median
Baseline
Patient Mean
Baseline
Mixed Effects
Random Forest

Figure 1. Mean absolute error (MAE) of testing set HDRS17 pre-

diction by evaluation scenario and model type. The MAE is re-

ported here at the group-level: i.e., it is the average error across

all observations in the testing set. The scenarios and models are

described in Sections 4.2 & 4.3, respectively.

ing values are set to -1 before the model is trained.

4.2. Evaluation Scenarios

Three evaluation scenarios are considered. First, a Random

Split setting with a train:test split of 70:30. Second, a Time

Split setting, where the initial 3 observations per patient are

used for training, and the remaining observations are used

for testing. In practice, this scenario reflects making fur-

ther predictions for existing patients (i.e., those that have

already received clinical assessments). Finally, a User Split

setting is considered, where observations for one patient are

held out from the model as a testing set, while the observa-

tions for the remaining patients are used in the training set.

The sampling is then repeated 31 times so all patients are

in the testing set exactly once. In practice, this scenario

reflects making predictions for new patients.

4.3. Models Assessed

Several simple baselines are implemented: the median

and the mean HDRS17 score of patients in the training

set (Group Median and Group Mean, respectively); the

HDRS17 score of the patient at the initial screening visit

(Patient Screen); and, the median and mean HDRS17 score

of the patient from the training set observations (Patient

Median and Patient Mean, respectively). Furthermore, to

compare the mixed effects model to a standard ML ap-

proach, a random forest regressor without mixed effects is

implemented (Random Forest)5. Finally, the mixed effects

random forest regressor is implemented per (1-5) with a

random effect term for the intercept (Mixed Effects Ran-

dom Forest; MERF). In all cases, the raw HDRS17 score is

predicted (range 0-52) without any pre-processing adjust-

ments.
5The accuracies of other standard ML models are presented in

SM Section D. These perform worse than the random forest and
are excluded from the main body in the interest of brevity.
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Table 1. Participant-level errors by scenario. The average of the mean absolute errors (MAE) for each participant is reported (Avg. Err.).

The user lift metric represents the average performance increase of the Mixed Effects Random Forest (MERF) compared to the most

accurate personal baseline (PBL). PBL is: the Patient Mean if Random scenario; the Patient Median if Time Split scenario; else, the

Patient Screen score if User Split scenario. A one-sample one-tailed nonparametric permutation test (p ≤ 0.05) is used to test if the

user lift value is significantly greater than zero. The p-values from this test are aggregated over independent experiments (with N=10
random seed repeats) using Fisher’s method. The worst-case error metric (WC Err.) representing the worst error for any participant is

also reported (see Section 4.4). NB: the permutation test is not calculated in the User Split scenario as the user lift is clearly less than

zero.

SCENARIO N. SEEDS AVG. PBL ERR. AVG. MERF ERR. AVG. USER LIFT USER LIFT P-VALUE WC PBL ERR. WC MERF ERR.

RANDOM SPLIT 10 3.349 3.165 0.199 (↑) 0.000 8.167 7.933

TIME SPLIT 10 3.450 3.174 0.276 (↑) 0.004 8.500 7.657

USER SPLIT 10 4.198 4.739 -0.541 (↓) N/A 11.000 12.417

4.4. Evaluation Metrics and Settings

The mean absolute error (MAE) is used to evaluate accu-

racy. It is calculated at two levels. First, in Figure 1 a

single MAE error is calculated across all observations at

the group-level. Second, in Table 1 a MAE error is calcu-

lated for each participant (i.e., the mean error using only

predictions from that participant). This second level deep-

ens the assessment of MERF versus the personal baselines.

Informed by suggestions from the literature (Demasi et al.,

2017), the MAE at the participant-level are used to derive

a user lift metric, which represents the improvement of the

MERF model over the baseline (e.g., if the baseline MAE

is 4 and the MERF MAE is 3, then the user lift is 1). A

corollary of this participant-level approach is that one can

formally test if, on average, the user lift is significantly

greater than zero. To do so a one-sample one-tailed non-

parametric permutation test is performed, from which the

p-values are reported in Table 1. Finally, the worst-case er-

ror is also reported, which represents the worst MAE for

any participant, and is thus a measure of model robustness

in this respect. Experimental settings are discussed further

in SM Section C.

4.5. Results

Figure 1 shows the MAE at the group-level. In two sce-

narios – the Random Split and Time Split – the mixed ef-

fects random forest shows an improvement over both the

standard random forest and, more importantly, the patient

median and mean baselines. However, it is also notewor-

thy that the mixed effects approach provides less of an im-

provement in the User Split scenario, and indeed using the

patient HDRS17 score at screening is a far better predictor

in this setting.

Table 1 shows participant-level errors and user lift metrics.

Improvement over the personal baselines is reflected at this

level in the Random Split and Time Split scenarios, with the

permutation tests suggesting the improvement is significant

(p ≤ 0.05). Moreover, the worst-case error is also slightly

improved in these scenarios by MERF, suggesting it also

helps to improve prediction robustness across individuals.

5. Discussion

These results suggest that a mixed effects approach al-

lows random forests to significantly outperform baselines

in HDRS17 predictions when patients in the testing set have

also contributed some data to the training set. Compared to

the standard random forest, this benefit likely stems from

the ability of the mixed effects model to fit a random effect

intercept parameter for each patient (bi). Such flexibility

ensures the predictions of the learned model are not cen-

tred around a group average HDRS17 score, but rather are

adjusted by the average observed scores for each patient

(cf. the conditional expectation (7)). That said, given the

significant lift of MERF over personal average baselines, it

is clear that the model learns more than just a participant-

level intercept. Indeed, it is probable that this additional lift

is due to the random forest fixed effect terms, f(Xi), that –

when estimated using the EM procedure (cf. SM Section A)

– learn relations between the multimodal input features and

the HDRS17 scores (net of patient specific random effect

values) that can be shared across patients.

Nevertheless, this method has limitations. Most notably, it

does not provide a lift in the User Split scenario. In con-

trast to the Time Split, in the User Split scenario no random

intercept parameter can be learned for the target user, and

thus the model can only predict using the fixed effect pa-

rameters learned from the patients in the training set (cf.

the unconditional expectation (8)). As such, its accuracy is

similar to that of a standard random forest in this scenario.

As future work we will first introduce additional random

effect parameters to assess if this further improves accu-

racy in the Random Split and Time Split scenarios. Sec-

ond, we intend to further analyse the model’s errors on a

patient-level, assessing if patient characteristics (e.g., the

properties of their training data distribution) correlate with

them. Third, we intend to repeat these analyses with al-

ternative target variables and datasets (e.g., including indi-

viduals without a current MDD diagnosis) to further under-
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stand how this method generalises to related mental health

prediction tasks. Fourth, as we do not currently use all days

of data collected (i.e., days without clinical scores are ex-

cluded), we will consider ways to incorporate this informa-

tion using time-lagged approaches. Fifth, we will attempt

to improve model generalisation to new patients (i.e., the

User Split scenario), e.g., by using patient characteristics

to compute initial random effect parameter values for the

new patients.

Finally, it is important to comment on the clinical sig-

nificance of these results. While a lower MAE would

be required to enable precision interventions, e.g., just-in-

time-adaptive interventions (Nahum-Shani et al., 2018), an

MAE ≈ 3.2 across patients is still useful for patient moni-

toring. For example, per the HDRS17, if a patient’s score

worsens from 0 (a level indicating recovery) to ≥ 15 (in-

dicating relapse), then even with an MAE ≈ 3.2 a relapse

prediction can still be made with reasonable confidence and

used to alert the patient’s care team.

6. Conclusion

This work has shown that extending random forests with

random effect intercept parameters significantly improves

accuracy over personal baselines when predicting clinical

HDRS17 depression scores. These findings only apply to

scenarios where patients have labelled data in the training

set, but nevertheless are a noteworthy contribution to im-

proving the utility of ML methods for digital mental health.
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Supplementary Material: Mixed Effects Machine Learning for Personalised

Predictions of Clinical Depression Severity

A. Mixed Effects Random Forest Expectation

Maximisation Training Procedure

This section resumes the theoretical overview of the mixed

effects random forest model introduced in Section 3. To

estimate the unknown parameters of f(Xi) and bi in (1-5),

maximum likelihood is used. Given a closed-form solu-

tion for parameter estimation does not exist, an expectation

maximisation (EM) procedure is used to iteratively update

the parameters to maximise a generalised log likelihood ob-

jective function (GLL). Given this estimation approach is

not original to our work, we state the GLL without proof

in (9-10). Likewise, we outline the EM procedure with

the parameter update equations in Algorithm 1. For a rig-

orous theoretical overview, we refer the reader to a refer-

ence on the theory of mixed effects parameter estimation

(Wu & Zhang, 2006) as well as to the work of the origina-

tors of the mixed effects random forest (MERF) approach

(Hajjem et al., 2011; 2014).

ǫi = [Yi − f(Xi)−Zibi] (9)

GLL(f, bi|Y ) =

n∑

i=1

{ǫT
i
R

−1

i
ǫi + b

T

i
D

−1
bi (10)

+ log|D|+ log|Ri|}

Algorithm 1 Fit Mixed Effects Random Forest with EM

System: MERF model defined by (1-5)

for r = 0 to Niterations do

E-step:

(i) Let Y ∗

i = Yi −Zib̂i(r−1)

(ii) Fit random forest to Y
∗

i to obtain f̂(Xi)(r)

(iii) Fit b̂i(r) = D̂(r−1)Z
T

i V̂
−1

i(r−1)(Yi−f̂(Xi)(r))

Where: V̂i(r−1) is calculated by D̂(r−1) & R̂i(r−1) in (4)

M-step:

(i) Update: σ̂2
(r) = N−1 ∑n

i=1{ǫ̂
T

i(r)ǫ̂i(r) +

σ̂
2
(r−1)[ni − σ̂

2
(r−1)trace(V̂i(r−1))]}

And: D̂(r) = n−1 ∑n

i=1{b̂i(r)b̂
T

i(r) + [D̂(r−1)−

D̂(r−1)Z
T

i V̂
−1
i(r−1)ZiD̂(r−1)]}

Where: ǫ̂i(r) = Ŷi − f̂(Xi)−Zib̂i (per (9))

end for

B. Summary of the Multimodal Dataset with

Clinical Annotations

Table 2 summarises the data collected during the observa-

tional study and how it was engineered into features for the

machine learning experiments. The feature designs were

informed by prior work identifying biomarkers / correlates

of depressive symptomatology. In total, the dataset con-

tains 2,820 input features and a a 1-dimensional HDRS17

as the target variable. 1,643 rows of data are collected in

total (each representing one day of patient observations).

However, in the experiments of this paper, the rows are fil-

tered to only include days where a clinical HDRS17 score

was reported. Thus, the total number of observations in

the assessed dataset is 149. This corresponds to 5 clinical

measures for 31 patients, minus 6 observations which are

missing for data quality reasons.

C. Supplementary Information on the

Experimental Settings

The experiments for each scenario were repeated 10 times

with a different seed used for the random sampling sce-

nario. This reduces the effect of data distribution and model

training artefacts on the reported results. The hyperparam-

eters of the standard random forest were tuned using a grid

search, where values of the number of features, the max

depth of trees, and the number of samples required to form

splits and leaves are tuned. However, no hyperparameter

tuning was performed on the mixed effects random forest

(though this could be pursued as future work).

A one-sample one-tailed nonparametric permutation test

was implemented to formally test the significance of the

patient-level user lift values (Demasi et al., 2017). A per-

mutation test allows one to calculate a p-value for a statisti-

cal test without requiring assumptions about the character-

istics of the sampling distribution(s). It first calculates the

test statistic on the observed sample(s). It then combines

the samples, permutes them, and randomly samples from

the combined sample. On each of these resamples, the test

statistic is recalculated and compared to the observed test

statistic (i.e., that from the original samples), allowing one

to empirically calculate the probability – i.e. the p-value

– of observing test statistic values at least as extreme as

the observed value. One can then use this p-value with a

pre-specified alpha (e.g., 0.05) to accept or reject the null
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Table 2. Data were collected from several modalities and engi-

neered into features using various aggregation techniques. Each

row in the dataset represents the observations for a given day.

1,643 days of data are collected in total. The final model uses

2,820 features as input and a 1-dimensional HDRS score variable

as its target.

Modality Description

HDRS17

clinical

score

(target)

The 17-item Hamilton Depression Rating Scale (Hamilton,

1960) is a clinician-administered depression assessment scale.

It was administered 6 times during the study: once during the

initial screening visit, once at the beginning of the 8-week ob-

servation period, and then every other week for the remainder

of the study.

The regression target variable is created by summing the

HDRS17 items to create a total score with a range of 0 to 52.

The mean of the HDRS17 scores in this dataset is 17.7, the

minimum is 5, and the max is 31.

Physiology:

Electroder-

mal Activity

(EDA)

Skin conductance level (SCL) and skin conductance response

(SCR) are measured on the left and right wrists. Previous

work has identified associations between skin conductance

and stress / mental health (Sano et al., 2018).

Various aggregated statistics are calculated on SCL & SCR

(e.g., number of peaks and amplitude) at various temporal ag-

gregations (e.g., hourly, daily, as well as aggregations to night,

morning, etc.). Statistics are calculated for each wrist and for

the difference between wrists.

Physiology:

Heart Rate

Variability

HRV is measured on the left and right wrists. HRV is

often found to associate with Major Depressive Disorder

(Koch et al., 2019).

(HRV) Various HRV metrics are calculated in the time and frequency

domains (e.g., AVNN, pNN50, rMSSD, SDANN, sDNNIDX,

rrSDNN, PSD of the high-, low, very-low frequency signals,

HF/LF ratio, etc.) at various temporal aggregations / periods

in the day (e.g., hourly, daily, as well as aggregations to night,

morning, etc.).

Average statistics for heart rate (HR) are also calculated on

both wrists at various temporal aggregations in the day.

Sleep Sleep time is calculated (over 24 hours and during the

night). Other sleep characteristics are calculated using

actigraphy, such as sleep onset time, wakeups, maximal

night uninterrupted sleep, and a sleep regularity index

(Ghandeharioun et al., 2017). Sleep disturbance is recognised

as a core symptom of depression (Nutt et al., 2008).

Motion /

Physical

Activity

Features for motion frequency (i.e., fraction of time in motion

within a period) and magnitude (i.e., the intensity of the mo-

tion) were calculated at various temporal aggregations using

accelerometer data collected from the left and right wrists.

Digital

Activity

(smart-

phone)

An Android app (MovisensXS, 2012) was used to collect

smartphone activity data, including streams for location, call

and messaging (sms) activity, and app usage and screen on

/ off time. Average statistics (mean, counts, sums, variance,

etc.) were calculated for these streams at various temporal ag-

gregations.

Environment

(weather)

Features related to the weather were also calculated (e.g., tem-

perature, precipitation, humidity, UV index, etc.). The Dark-

Sky API (DarkSky API) was used to obtain historical weather

information for each participant by using their location col-

lected through the MovisensXS app.

hypothesis. To aggregate the p-values in Table 1 across

the independent experiment repeats (i.e., different seeds)

Fisher’s method was used.

It is also worth noting why the one-tailed permutation test

is not performed in the User Split scenario in Table 1. As

the test is one-tailed, it only assesses if the user lift is sig-

nificantly greater than zero. For the User Split scenario,
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Figure 2. Extended results set including standard machine learn-

ing models as additional baseline comparisons. Mean absolute

error (MAE) of testing set HDRS17 prediction by evaluation sce-

nario and model type. The MAE is reported here at the group-

level: i.e., it is the average error across all observations in the

testing set. The scenarios are described in Sections 4.2, and the

extended set of models are described in Section D.

the MERF error is clearly worse than the Patient Screen

baseline and thus the user lift is greater than zero. The one-

tailed permutation test is thus not performed, as it does not

test this side of the test statistic distribution, and thus report-

ing a non-significant p-value here may seem incongruous

with the magnitude of the negative user lift value.

The system is implemented in Python 3. Scikit-learn

(Pedregosa et al., 2011) is used for the machine learning

models, with the mixed effects model also using the merf

Python library (MERF). The permutation tests were imple-

mented using MLxtend (Raschka, 2018).

D. Supplementary Results: Comparison to

Standard Machine Learning Baselines

To further evidence the benefits of the mixed effects ran-

dom forest (MERF) model over standard baselines, Fig-

ure 2 displays an extended results set that includes the

MAE of standard machine learning models, in addition to

the mixed effects random forest and simple average base-

lines discussed in Section 4.3. The scenarios are consistent

with those described in Section 4.2. Given the performance

of all of these machine learning models are similar to (or

worse) than the group level averages, they are excluded

from the main body in the interest of brevity. However,

we discuss their details here for completeness.

Hyperparameter tuning is performed on all of the machine

learning models (with the exception of the mixed effects

random forest) before the testing set MAE metric is gen-

erated. Linear Regression refers to a standard regression

model with linear parameters, and different hyperparame-

ters are assessed for the strength and nature of regularisa-



Mixed Effects Random Forests for Personalised Predictions of Clinical Depression Severity

tion (i.e., L1 vs L2). Its notably poor performance may

result from either the data setting – where there are many

more features than observations (i.e., the p ≫ n context)

– or its inability to model nonlinear relations between fea-

tures, or both. Decision Tree refers to a standard decision

tree regression, and hyperparameters of its max depth, as

well as the number of samples required to form splits and

leaves are tuned. KNN refers to a standard k-nearest neigh-

bours regression, and the number of neighbours optimised

in the hyperparamter tuning. Finally, SVR refers to a sup-

port vector regression model with a radial basis function

kernel (RBF), and the kernel coefficient values (gamma)

and L2 regularisation strength (C) are tuned. The mod-

els were implemented using Scikit-learn (Pedregosa et al.,

2011).


