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Abstract—In order to model students’ happiness, we apply
machine learning methods to data collected from undergrad
students monitored over the course of one month each. The
data collected include physiological signals, location, smartphone
logs, and survey responses to behavioral questions. Each day,
participants reported their wellbeing on measures including
stress, health, and happiness. Because of the relationship between
happiness and depression, modeling happiness may help us to
detect individuals who are at risk of depression and guide
interventions to help them. We are also interested in how behav-
ioral factors (such as sleep and social activity) affect happiness
positively and negatively. A variety of machine learning and
feature selection techniques are compared, including Gaussian
Mixture Models and ensemble classification. We achieve 70%
classification accuracy of self-reported happiness on held-out test
data.

Keywords—machine learning; happiness; wellbeing

I. INTRODUCTION

Not only have rates of depression in the United States
notably increased in the last century, but a greater number
of young adults are becoming depressed [1]. Depression is
prevalent on college campuses, and is also the most frequent
precursor to suicide [2]. Addressing depression among college
students has become a major concern for some universities,
especially given the fact that 18-24-year-olds have the highest
incidence of suicidal ideation, and suicide has become the third
leading cause of death among college-aged individuals [3].

For these reasons, it is important to understand the fac-
tors that contribute to resistance to depression. A body of
research has shown that overall wellbeing, including factors
like self-reported happiness, social support, and engagement
with work, contribute to an individual’s resiliency and ability
to handle negative life events without becoming depressed [4].
Physiological factors also affect vulnerability to depression.
Numerous studies have shown a significant link between
sleep disturbances and subsequent depression [5], and physical
health is strongly correlated with depression and happiness [6].

This study advances understanding of the role of affect
in resiliency and wellbeing by investigating the relationship
between factors like sleep, social and physical activity, stress,
and happiness. Ideally we would like to investigate the factors
that affect an individual’s overall wellbeing both positively
and negatively. Since wellbeing cannot be measured directly,
we rely on self-reported measures that are known to affect

wellbeing, including stress, health, and happiness. Because
self-reported happiness is strongly correlated to measures of
depression [6], we will focus heavily on happiness so that
we can not only discover factors that contribute to wellbeing,
but also use machine learning methods to build a system that
can automatically detect when a college student is becom-
ing vulnerable to depression. This system could be used to
guide timely interventions so that serious consequences of
depression — such as suicide — can be prevented. To aid
our investigation we examine a wide range of data sources:

• Physiological data: electrodermal activity (EDA) (a mea-
sure of physiological stress), and 3-axis accelerometer (a
measure of steps and physical activity)

• Survey data: questions related to academic activity, sleep,
drug and alcohol use, and exercise

• Phone data: phone call, SMS, and usage patterns
• Location data: coordinates logged throughout the day
In this paper we will develop a machine learning algorithm

to distinguish between happy and unhappy college students,
assess which measures provide the most information about
happiness, and evaluate the relationship between different
components of wellbeing including happiness, health, energy,
alertness and stress.

II. BACKGROUND AND RELATED WORK

There is a growing literature showing the connection be-
tween social support and wellbeing. Social support has been
shown to mediate stress [7], protect against depression [8],
and even improve overall health and recovery from illness [9].
In fact, positive social relationships have been found to be the
single most important factor in wellbeing in studies across ages
and cultures [10]. Conversely, people who lack social support
are at risk for a range of mental health issues, including
depression, anxiety, and suicide [11]. Because smartphone
logs provide a record of the number, duration, and type of
communications with social contacts, they may provide insight
into an individual’s social support and therefore stress, health,
and happiness. Further, simply using the phone itself may
affect wellbeing through sleep quality; the phone screen emits
a large amount of artificial light, which has been shown to
adversely affect the circadian rhythm and sleep [12].

In fact, smartphone data (e.g. location, proximity, and com-
munication) have been explored in a variety of studies which
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are surveyed in [13]. Dong and colleagues used smartphone
data to model the underlying structure of social interactions
in a student dormitory [14], while [15] uses this data to
explore the relationship between sleep and mood. Predicting
stress from smartphone logs has been attempted by multiple
researchers (e.g. [16] [17] [18]). There have been prelimi-
nary studies demonstrating that mood can be classified using
smartphone data [17] [19], and Bogomolov and colleagues
have successfully predicted happiness from a combination of
smartphone data, personality, and weather patterns [20].

Physiological measures such as electrodermal activity
(EDA) are also frequently used in studies related to affect and
wellbeing (e.g. [21], [22], [23], [24]). EDA measures sudo-
motor innervation and sweat gland activity, which is increased
through activity of the sympathetic nervous system (SNS) [25].
Because the SNS is influenced by the hypothalamus and the
limbic system (structures in the brain that deal with emotion)
EDA can be an effective technique for measuring emotion and
stress. The link between EDA and stress was directly explored
in a pilot version of the study used to collect the data analyzed
in this paper [16]. Other research has investigated the link
between EDA and sleep quality [26] [27].

III. USER STUDY

This research is based on data from an ongoing longitudinal
study investigating the impact of behavioral and physiological
measures on wellbeing; more details and descriptive statistics
about the data can be found in [28]. The data were collected
over two 1-month (30-day) experiments in which 20 and 48
MIT undergraduates were recruited to participate, respectively.
Each participant wore an Affectiva Q-sensor nearly contin-
uously for the entire 30-day period to gather Electrodermal
Activity (EDA), skin temperature, and 3-axis accelerometer
data. Additionally, each participant downloaded an app on his
or her Android Phone that logged calls, SMS messages, times
the screen was turned on and off, and location information.
Surveys were completed by participants two times each day
(in the morning and evening), and asked questions about the
participants’ behaviours, activities, and wellbeing.

IV. ANALYSIS OF WELLBEING MEASURES

Participants in the study self-reported on five scales twice
a day related to wellbeing: stress, health, energy, alertness,
and happiness. Although we would ideally like to be able
to predict overall wellbeing, how to create a ground-truth
wellbeing measure from these scales is an open question. A
first impulse might be to compute a composite measure from
some of the relevant scales, for instance by computing the ratio
between happiness and stress. However this schema would
treat a highly happy and highly stressed state as equivalent
to a low happiness and low stress state. Not only is this
assumption not empirically validated, but a low happiness and
low stress state could be indicative of depression (sadness
and apathy), whereas a high happiness high stress state could
actually represent greater underlying wellbeing than a non-
stressed state, given the contribution of personal achievement

TABLE I
CORRELATION MATRIX FOR MEASURES OF WELLBEING

Happiness Health Calmness Energy Alertness
Happiness -
Health 0.537 -
Calmness 0.664 0.480 -
Energy 0.480 0.410 0.389 -
Alertness 0.374 0.318 0.324 0.721 -

and engagement with work to overall wellbeing [4]. For these
reasons we first attempt to understand the relationship between
these measures in order to frame our classification problem.

Table I shows the Pearson’s correlation coefficients between
all pairs of wellbeing measures. Note that stress was actually
reported on a scale where a low score indicated a highly
stressed state and a high score indicated calmness, so for
consistency we report this as Calmness in the following expla-
nations. We can see that all of the measures are highly related,
with all correlations reaching significance at the p = 0.01
level, even after applying a Bonferroni correction to account
for alpha inflation. Happiness has the highest correlation
coefficients, suggesting that if we were to limit our predictions
to Happiness alone, it would give the most insight into the
remaining scales. We are also most interested in Happiness,
as it has been shown to relate directly to depression [6].

V. MACHINE LEARNING METHODS

Based on the analysis of the previous section as well as
our theoretical interests, we chose to use the Happiness scale
as our ground-truth measure; it was reported using a slider
from “Sad” (a value of 0) to “Happy” (a value of 100). We
frame the problem as binary classification; days on which a
participant reported a Happiness score in the top 30% of all
Happiness scores are labeled as a positive day, and days in
which participants reported a Happiness score in the bottom
30% are labeled as a negative day. We do not include the
middle 40% of scores. This reduces the size of our dataset
to a possible 1110 points, and thus reduces our classification
power. However, the behaviors on these days do not appear to
have a strong effect on Happiness or wellbeing, and are thus
not informative for this problem.

Using the remaining data points, we randomly partitioned a
training, validation and testing dataset. The training and vali-
dation sets were used to perform feature and model selection
for each data source; we refer to these sources as modalities,
and discuss each in greater detail in Section VI. Given the
complexity of our data, we used an iterative feature design
process. After designing an initial feature set based on a review
of the literature, we assessed the relevance of each feature
by measuring information gain and through Wrapper Feature
Selection (WFS) [29]. Irrelevant features were removed in
order to prevent overfitting, and more features were repeatedly
added and assessed, until we arrived at a final feature set
for each modality. The number of features eventually selected
optimized accuracy on the validation set.

A variety of machine learning algorithms were tested in
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order to find the most appropriate model for each type of
data. These include Support Vector Machines (SVM), Random
Forests (RF), Neural Networks (NN), Logistic Regression
(LR), k-Nearest Neighbour (kNN), Naı̈ve Bayes, and Ad-
aboost. After finding the best classifier, the parameter space
of the classifier was searched, and the parameters which
optimized performance on the validation set were selected.

VI. FEATURE DESIGN BY MODALITY

A. Physiology

Physiological measurements collected include EDA mea-
sured as skin conductance (SC) in microSiemens (µS), 3-axis
accelerometer, and temperature, recorded at a sampling rate of
8 Hz. Following [16], we compute each set of physiological
features over different time periods during the day (12am-6am,
6am-12pm, 12pm-6pm, 6pm-12am), as well as periods when
the participant was asleep vs. awake (determined through the
survey responses). To compute the features, we first apply
a 1Hz low-pass filter to the SC signal, then compute the
normalized signal according to the mean, max, and min for
each participant, i.e. SCi = SCi−µ

max−min [22]. We include
statistical features related to the raw signal, normalized signal,
and signal derivative computed over each time period.

When a person experiences a physiological stress response,
they may simultaneously experience a skin-conductance re-
sponse (SCR), in which their SC signal peaks rapidly and then
decays at an exponential rate (see Figure 1 for an example of
typical SCRs). Because of the relationship between stress and
wellbeing, EDA will be most useful if we can determine when
SCRs occur and compute features related to them. Our initial
feature design treated SCRs as points at which the derivative
of the SC signal exceeded a threshold, as per [26] and [30].
In later iterations, we detected SCRs based on several criteria
involving the amplitude, duration, and shape of the SCR; this
proved to be more effective. We include features related to
the number of SCRs occurring over each period, as well as
statistics related to the amplitude, rise time, and area under
the curve (AUC) of the detected SCRs.

Given the 24-hour-a-day, ambulatory nature of the EDA
recordings in this study, the signal is vulnerable to artifacts
and noise. Further, increases in SC are not always due to
stress; they could be the result of physical activity or increasing
temperature. Therefore we computed the magnitude (Mag) of
the accelerometer signal, Mag =

√
acc2x + acc2y + acc2z , and

used this to weight the strength of the SC signal. This was
accomplished by normalizing the Mag values to be between
0 and 1, and computing the inverse signal by subtracting
this value from 1. We then took the product of this inverse
accelerometer with the SC signal. Thus, the new signal repre-
sents one in which the effects of SC increase due to physical
activity are diminished. A similar procedure was used to
compute a temperature-weighted SC signal. Features related
to these signals were then computed, and both types proved
useful in the feature assessment process. In order to detect
recording artifacts we applied an algorithm described in [31],
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Fig. 1. An example of typical SCRs

and removed peaks that were identified as possible artifacts
from the analysis.

Physical activity is also strongly related to wellbeing, given
its profound impacts on happiness and stress [32]. Therefore
we also included a feature that approximates of the number of
steps taken by counting the number of times the Mag signal
crossed a small threshold [27].

B. Survey

The survey features relate to the number and duration of
academic, exercise, and extracurricular activities, the amount
of time spent studying, sleeping, napping, and trying to fall
asleep, whether participants woke up during the night or
overslept, whether they interacted with someone in person
or digitally before falling asleep (referred to as pre-sleep
interaction), and whether they had a positive or negative social
interaction that day. Additionally, students indicate whether
they consumed caffeine, alcohol, or drugs that could make
them alert, sleepy, or tired. We are interested in how these
behavioral choices and habits affect wellbeing. The other self-
reported measures of wellbeing (stress, health, energy, and
alertness) are not included as features; these are what we
would like to eventually detect automatically.

C. Phone

The phone log data consist of information about the timing,
type, and duration of phone calls and SMS messages, and
times the screen was turned on and off. An example of this
type of data is shown in Figure 2. We see two mechanisms
through which screen and communication information can
affect wellbeing; light from the screen can disrupt circadian
rhythms and therefore sleep [12], and the amount of social
support in a person’s life is strongly linked to resilience to
depression (see Figure 2 for a possible example of a subject’s
social network potentially helping the subject move from a
sad mood back to a happy mood.) [4] [8] [10]. Therefore we
sought to create features that would capture these factors.

We discarded days with fewer than 5 screen on events,
reasoning that the app must have been malfunctioning. Previ-
ous research has shown that people interact with their phone
between 10-200 times a day [33]. The total number and basic
statistics (mean, median, std. dev.) related to timestamp were
computed for calls, SMS messages, and screen-on events.
Total duration and duration statistics were computed for calls
and screen activity. As with physiology, the features were
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Fig. 2. Example of a participant’s SMS data for 4 consecutive days. Note that
there is a large increase in SMS during the negative day, which is followed
by a return to a positive day

computed over time intervals spanning the course of the day.
These may be important because we wish to capture the time
when blue light from one’s phone is experienced relative to
the natural rhythm of sunlight.

Because we can determine whether an SMS is incoming
or outgoing, we also compute the above features for these
specific type of events. This could be informative, for example
because incoming messages may relate more strongly to social
support than outgoing messages. Finally, we compute the
number of unique callers and unique messengers for the entire
day and also for each call/SMS type. Some researchers have
hypothesized that diversity of social interactions with a range
of individuals is linked to wellbeing [17].

In summary we computed 289 phone features based on
statistics related to the timing, duration, and frequency of
screen, call, and (incoming and outgoing) SMS events, com-
puted over various time intervals throughout the day.

D. Mobility

In addition to communication and screen events, the phone
app logs the participants’ GPS coordinates throughout the
day, as well as whether they are using Wifi or cellular data.
Location is sampled whenever available in different frequen-
cies on different devices, so we began by downsampling the
signal into one set of coordinates for every 5 minute segment,
computed using the median of the longitude and latitude
samples within it. Segments that contained no samples were
interpolated according to neighboring samples. We allowed
interpolation of no more than three consequent segments (15
minutes), marking segments as missing data when necessary.

Building on previous studies [16] [17] [18], we ex-
tracted statistical descriptors of the subjects’ distances traveled
throughout the day. For each day, we computed the radius of
the minimal circle enclosing the subject’s location samples, as
suggested by [17]. The source of the location data (WiFi or
cellular) was used to compute an approximation of the time
spent indoors and outdoors. Finally, we used the latitude and
longitude coordinates of the university’s campus to compute
the time spent on campus each day.

Noticing that many students spent most of their time either
at home or campus, we set out to model their location in a
way that would better capture irregularities in this routine.
We postulate that these irregularities would have a significant

effect on measurements of their wellbeing. Therefore we
computed a Gaussian Mixture Model (GMM) for each partic-
ipants’ typical location behavior. A GMM learns the number
and location of Gaussian distributions required in order to
collectively represent a probability distribution; in this case,
the distribution over each participants’ possible locations in 2-
dimensional space. More formally, each participant’s location
distribution was modeled with K Gaussian components, as in:

p(xi|θ) =
K∑
k=1

πkN(xi|µk,Σk)

The GMM was trained on the latitude and longitude co-
ordinates of the participant that were collected throughout
the entire study (rather than just those seen on positive
and negative days), since we are using the GMM to model
routine behavior. The model selection process varied both the
number of components, K, as well as the type of covariance
matrix (spherical, diagonal, tied and full, each with different
degrees of freedom). The trained model learns K Gaussian
components that represent Regions of Interest (ROIs) that
the participant commonly visits. We restricted the number of
components K to 20, as we believed it is unlikely for an
individual to have repetitive interest in more than 20 locations
within a month. The best model fit was chosen using the
Bayesian Information Criterion (BIC):

BIC = −2 log p(D|θ) + df(θ) logN

where θ is the MLE for the model and df(θ) is the number
of degrees of freedom in the model [34]. Figure 3 illustrates
a GMM fitted to the location data from one subject. We were
able to verify by inspecting a map of the area that the identified
components correspond to locations on the university campus
and the participant’s residence (specific coordinates have been
redacted for privacy).

After fitting the GMMs for each subject, they were used to
compute several features that relate to the regularity of partic-
ipants’ routines. First, the induced probability distribution was
used to compute the log likelihood for each day; this represents
whether the day varied unusually from the typical routine; we
refer to it as normality of day. Because each model learns
the number and coordinates of the locations typically visited
by the participants, we can determine how many different
familiar locations were visited on a given day (ROIs). This
approach builds on an idea that was presented by [18], where a
correlation was shown between emotional stress and a person’s

Fig. 3. GMM fitted to location data from one participant. The black
points are latitude longitude coordinates, while the yellow are the means
of the Gaussian components representing the ROIs. The contours mark the
probability distribution induced by the model.
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TABLE II
FEATURES WITH THE HIGHEST INFORMATION GAIN FOR EACH MODALITY

Physiology Survey Phone Mobility
0.0560 ↑ SC median 12am-6am 0.0379 ↑ Pre-sleep activity 0.0602 ↓ Screen dur. med. 0.0301 ↓ Time indoors
0.0418 ↑ SC s.d. 12am-6am 0.0240 ↑ Positive interaction 0.0456 ↓ Screen dur. med. 6pm-12am .0293 ↓ Normality of day
0.0408 ↑ SCR AUC total 12am-6am 0.0239 ↓ Negative interaction 0.0377 ↓ Screen dur. med. 8pm-12am
0.0390 ↑ Mag Acc. s.d. wake 0.0200 ↑ Exercise duration 0.0367 ↓ Screen dur. med. 4pm-8pm
0.0382 ↑ Mag Acc. s.d. 6pm-12am 0.0191 ↑ Exercise (true or false) 0.0235 ↓ Screen dur. med. 8am-12pm
0.0381 ↑ SC med. sleep 0.0190 ↑ Exercise count 0.0213 ↓ Screen dur. mean 4pm-8pm
0.0378 ↑ Temp. weight. SC s.d. 12am-6am 0.0140 ↓ Drugs - tired 0.0210 ↓ Screen dur. med. 12pm-6pm
0.0374 ↑ SCR AUC mean 12am-6am 0.0128 ↓ Studying duration 0.0204 ↑ Screen total num. 8am-12pm
0.0367 ↑ SCR AUC max 12am-6am 0.0106 ↑ Drugs - alcohol 0.0185 ↑ Screen total num.
0.0366 ↑ SC deriv. mean 12pm-6pm 0.0105 ↓ Extracurricular count 0.0178 ↓ Screen timestamp s.d. 12am-4am

number of geo-location ROIs. Finally, the model BIC score
and Akaike Information Criterion (AIC) [34] were computed
using the data from each day; this represents how well the
model fits that particular day, and thus how much the day
deviates from routine.

VII. RESULTS

The goal of this research is two-fold: 1) to understand
the behavioral and physiological factors that impact wellbe-
ing positively and negatively, and 2) to build a model that
can detect when students become unhappy and thus drive
interventions to mitigate the risks of depression. Therefore
this section will first discuss the features found to be the
most informative from each modality, and then present the
classification performance in predicting positive and negative
days.

A. Feature Evaluation

Despite reducing the feature set for each modality to the
size that optimized validation accuracy, in total we still have
762 features. Therefore we cannot provide a thorough analysis
of the usefulness of every feature selected. Instead, we will
use information gain to assess the informativeness of the
features. Information gain is computed according to Eq. 1,
which involves the entropy function given in Eq. 2.

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (1)

H(X) = −
∑
i

P (xi) logP (xi) (2)

Information gain can be interpreted as the reduction in
uncertainty about one variable after observing the other [34].
In this case, we assess how much information each feature
provides about our classification label, Happiness. We present
up to 10 of the features that had the highest information gain
for each modality in Table II, along with the score itself. We do
not present features for which the information gain was close
to zero. Since information gain is computed on each feature in
isolation, it does not relate to how informative a collection of
features may be when used in combination in a classification
model. Therefore highly similar features (such as the multitude
of screen duration features) all appear as valuable according
to information gain. For this reason the information gain

scores presented in Table II are not necessarily predictive of
classification performance for each modality.

For interest’s sake, Table II also provides an arrow indi-
cating the direction of the relationship between the feature
and the classification label, where an up arrow indicates that
the feature affects happiness positively. These directions were
obtained from the direction of the correlation between the
feature and Happiness. For example, we see that time indoors
is negatively correlated with Happiness; the more time spent
indoors, the less likely the participant is to report feeling
happy. We seek only to provide a general trend to give the
reader some idea of how the feature affects Happiness, and
have not attempted to establish the statistical signifance of all
of these relationships.

Many of the physiology features relate to the SC signal
and SCRs that occur between midnight and 6am, presumably
when the participant is asleep. Note that different sleep stages
are characterized by different SC patterns; for example, SCRs
are more likely to occur during slow-wave sleep or non-REM
2 sleep [26]. Therefore these features may relate to sleep
quality and thus to wellbeing. The survey features confirm
our hypotheses that exercise and social interaction are strongly
linked to happiness, supporting current research on the topic
(e.g. [8] [10] [32]). It may be surprising to see that alcohol
use appears to boost happiness. Since alcohol consumption is
reported in the evening at the same time as the happiness
scores, this is likely a reflection of the current effect of
alcohol or possibly social interaction, and does not relate to
prolonged alcohol use over the long term. We see from the
phone logs that using the phone for longer periods of time
(screen duration) appears to be associated negatively with
happiness, especially if it occurs late in the day. Conversely,
checking the phone frequently (screen total num) has a positive
association with happiness, especially in the morning. Finally,
we can see from the mobility features that time indoors and the
likelihood or normality of the day as computed by the GMM
are inversely related to happiness. This implies that when a
participant spends time outdoors or deviates more from their
typical routine, they tend to be happier.

B. Classification

Table III presents the classification results for each modality,
the relative dataset and feature set sizes for context, and the
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TABLE III
CLASSIFIER, PARAMETER SETTINGS AND ACCURACY RESULTS FOR EACH MODALITY

Classification Accuracy
Modality Dataset Size # Features Classifier Parameter Settings Validation Baseline Test
Physiology 933 426 SVM C=100.0, RBF kernel, β = .0001 68.37% 51.79% 64.62%
Survey 1110 32 SVM C=100.0, RBF kernel, β = .01 71.26% 50.86% 62.50%
Phone 1072 289 RF Num trees = 40, Max depth = infinite 66.67% 51.98% 55.95%
Mobility 905 15 SVM C=100.0, RBF kernel, β = 1 69.95% 53.65% 65.10%
All 768 200 SVM C=0.1, Linear kernel 72.84% 53.94% 68.48%

classifier and parameter settings that were found to optimize
validation accuracy. We found that the SVM and RF classifiers
tended to produce the best results on this dataset. Accuracy on
the held-out test set (i.e. the proportion of samples in which
the classifier’s prediction matches the true label) provides an
estimation of the results we can expect on novel data; therefore
we can conclude that our best model would be able to identify
students that are unhappy with 68.48% accuracy.

Note that the size of the dataset involving all features
is reduced due to missing data. Considering the volume of
data collected and the length of the study, some modalities
are missing data for certain participants on certain days; for
example, if a participant forgets to wear their sensor. Therefore
when we combine all the modalities and restrict our focus to
only those days/participants for which data from each modality
is available, the dataset shrinks. This could make the ‘all’
dataset vulnerable to overfitting; therefore we applied the same
feature selection techniques and found a reduced set of 200
features to be most effective.

Ensemble classification offers an alternative approach to
training a single classifier on all of the available features.
Rather, the predictions from several classifiers are integrated,
often in a weighted majority vote [35]. We built an ensemble
classifier which combines the predictions of the best classifier
from the best modalities by weighting their predictions ac-
cording to the classifier’s validation accuracy. We found that
using the best three modalities produced the highest validation
accuracy. The ensemble allows us to deal with missing data
in a more robust way; if a modality is missing data for a
given sample day, then that classifier simply abstains from
the vote. Each modality is able to maintain the maximum
amount of training data, while the ensemble combines data
from several modalities without losing information. The best
accuracy achieved by the ensemble classifier on the held-out
test set was 70.17%. Table IV shows the confusion matrix for
the predictions made by the ensemble classifier on the held-
out test set. It is slightly more likely to falsely predict that a
student is sad when she is actually happy, rather than falsely
predict that a student is happy when she is actually sad. This

TABLE IV
CONFUSION MATRIX FOR ENSEMBLE CLASSIFIER

Predicted
Happy Sad

Actual Happy 77 40
Sad 31 90

characteristic suggests the system is more sensitive to detecting
sadness, which is desirable if it is to be used to detect when
to intervene if a student is becoming unhappy.

VIII. DISCUSSION AND LIMITATIONS

Although the classifiers trained on each modality were
able to achieve results exceeding the baseline, performance
differed across modalities. Interestingly, mobility offers high
performance with few features; given the features found to be
the most valuable for mobility, it would appear that whether or
not a person spends time outdoors and deviates from normal
routine is strongly related to whether they will feel happy on
that day. Physiology also offered relatively high performance,
suggesting that wearable devices which can monitor a person’s
physiology throughout the day may be a promising way to
detect changes in happiness, especially if those devices are
capable of monitoring sleep quality.

A limitation of this work is that it does not consider indi-
vidual differences; for example, extracurricular activities could
make some students happy or be stressful for other students. In
future work we would like to model these complexities using
Multi-Task Learning (MTL) [36]. Another limitation is that
we do not model long-term effects of behaviors on happiness;
for example, drinking alcohol may affect a participant’s mood
over the long term.

IX. CONCLUSION

This work has demonstrated that physiological, behavioral,
phone and mobility data can all be used successfully to
model happiness. We have contributed to the literature on
wellbeing by examining not only which features provide the
most information about happiness and how they affect it, but
also by investigating the relationship between happiness and
other components of wellbeing, such as health, stress, and
energy. The best accuracy obtained by our models on novel
data, 70.2%, may be sufficient to guide interventions intended
to prevent depression, especially if these interventions are only
triggered after the classifier detects a consistent pattern of
unhappiness over several days or weeks.
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